Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептиды связывание металла

    В данной главе на примере взаимодействия с небольшим числом ионов металлов рассматриваются основные группы атомов в аминокислотах и пептидах, потенциально способные к связыванию металла. Прежде чем обсуждать эти взаимодействия, отметим, что связывание металла функциональными группами белка может отличаться от связывания металла такими же группами в малых пептидах двумя важными особенностями. [c.152]


    Во-вторых, все больше появляется доказательств того, что активные центры ферментов, в том числе и металлоферментов, находятся в полостях или карманах белковой структуры, которые выстланы главным образом неполярными боковыми цепями аминокислот и моделируют, таким образом, неводные растворы. Следовательно, связывание металла таким активным центром или вблизи него по сути осуществляется в неводных растворах, диэлектрические проницаемости которых должны отличаться от диэлектрических проницаемостей водных растворов электролитов, в которых было исследовано большинство комплексов металлов с пептидами. В то время как взаимодействие металлов с пептидами в водных растворах может адекватно представлять условия на поверхности раздела между белком и окружающей средой, оно не может быть хорошей моделью того, что происходит внутри белковой молекулы. [c.153]

    Для ряда комплексов переходных металлов с аминокислотами и пептидами термодинамические функции реакций комплексообразования M2+- -L 4 ML+ HML+-f определены из температурных градиентов констант равновесия [14—16] и из калориметрических измерений [15, 17—19]. Наиболее значительные отрицательные вклады в энтальпию хелатообразования дает образование связей металл — атом азота аминогруппы [14, 15]. Изменение энтальпии при связывании металла с карбоксильным атомом кислорода фактически не благоприятствует реакции [15], и хелатообразование всецело обусловлено увеличением энтропии в результате освобождения акво-лигандов и взаимной нейтрализа-дин зарядов металла и карбоксильной группы. [c.155]

    Карбоксипептидаза А катализирует гидролиз некоторых концевых пептидных связей в пептидах и белках и содержит один атом цинка в молекуле. Путем замены цинка на Мп + в фермент можно ввести парамагнитный зонд, при этом активность хотя и снижается, но не утрачивается полностью. Изменения эффекта парамагнитного усиления релаксации протонов воды показали, что связывание таких ингибиторов, как бромацетат, приводит к вытеснению молекулы воды из координационной сферы иона Мп +, соединенного с ферментом, что указывает на непосредственную связь между ингибитором и ионом Мп + [14]. Последующее изучение спектров ЯМР ингибиторов подтвердило гипотезу о прямом связывании с Мп + [15]. Однако для большинства ингибиторов не удалось определить расстояния из-за того, что т , с [уравнение (23.5)]. Несмотря на это, можно определить верхнюю границу возможных расстояний, полагая ЕсЛи и величины одного порядка, то можно, по крайней мере в принципе, измерить т , независимым путем,что позволяет затем рассчитать Условие 2т > 1,2га при исследованиях ферментов выполняется очень часто, так как (т. е. время жизни комплекса металл -фермент — лиганд) часто имеет порядок 10 с, что совпадаете типичными значениями для Т 2т- [c.389]


    Согласно Клотцу [48, 49], металл служит мостиком для связывания фермента с О", возникающим при присоединении 011 к пептиду или амиду.  [c.320]

    Многие аминокислоты имеют константы стабильности очень близкие и только две из них — цистеин и гистидин связывают металл значительно прочнее. Пептиды образуют с металлами менее прочные комплексы, но возможности для связывания здесь больше (табл. 2). [c.29]

    Одно из нетривиальных качеств этого трипептида — высокая селективность связывания ионов меди и других переходных металлов за счет их взаимодействия с имидазольным кольцом гистидина, благодаря чему пептид приобретает способность участвовать в окислительно-восстановительных реакциях. [c.40]

    Pt и Рс1 в периодической системе расположены под Ni и также имеют электронную конфигурацию . Подобно Ы1(П), двухвалентные ионы этих металлов вызывают ионизацию пептидных атомов водорода. Они образуют квадратно- плоскостные комплексы, в которых местами связывания металла являются депротонирован-ные пептидные атомы азота. По мере продвижения сверху вниз в группе периодической системы стабилизация кристаллического поля донорами более сильного поля увеличивается и, следовательно, повышается эффективность ионов металлов в лабилизации пептидных протонов. В присутствии Р(1(П) пептидные протоны титруются при pH 3,5 [74] по сравнению с pH 8—9 для N (0). Когда в растворе происходит смешивание [Р1С14] с пептидами, депротонирование пептидных групп осуществляется даже при еще более низких значениях pH. Это демонстрируется структурой комплекса Р1(С1у-ь-Ме1)С1-НгО, который кристаллизуется при pH 2,5 (см. формулу XXXIX [75]). Положение атомов водорода в этом комплексе установлено методом дифракции нейтронов, так что нет сомнения в том, что пептидные группы депротонированы, в то время как карбоксильная группа еще нейтральна. (Отсюда не следует, что в связывании [Р1СЦ]2- с белками всегда участвуют депротонированные пептидные группы, так как пептидные атомы азота в белках обычно менее доступны, чем в растворенных молекулах пептидов.) [c.176]

    Многие металлопротеиды содержат особые металл-связывающие простетические группы, примером которых может служить порфириновая группа в гемоглобине (рис. 10-1). Иногда специфический центр связывания создается кластерами из карбоксильных, имидазольных или других групп. В качестве одного из лигандов в некоторых белках может выступать МН-группа пептидной связи, которая утратила протон. Небольшие пептиды реагируют с ионами Си +, образуя комплексы [30, 31] в некоторых из них ион меди ковалентно связан с азотом амидной группы [уравнение (4-38), стадия б]. [c.268]

    Химическая природа участков связывания ионов Ыа+ и К+ в ионном насосе неизвестна. Однако некоторые соображения на этот счет позволяют высказать данные, полученные при изучении антибиотиков пептидной природы, многие из которых связывают ионы металлов и катализируют их диффузию через мембраны [58]. Примером соединения такого рода может служить циклический депсипептид (пептид, который наряду с амидными содержит также и сложноэфирные связи) — валиномицин. В состав этого антибиотика входят остатки О- и Ь-валина, L мoлoчнoй кислоты и О-оксиизовалериановой кислоты. [c.365]

    Архитектура иммуноглобулина может служить основой для синтеза in vitro пептидов с заданными связывающими свойствами. Для теоретических и практических исследований может оказаться крайне полезным синтез in vitro полипептидной цепи с определенной специфичностью и сродством к данному соединению. Один из возможных путей может начаться с природной или синтетической области VlIVh без гипервариабельных петель в качестве остова. Путем включения подходящих последовательностей на место гипервариабельных сегментов можно затем сформировать специфичный центр связывания рассматриваемого лиганда без нарушения процесса свертывания и стабильности остова [498]. Пример Си —Zn -содержащей пероксид-дисмутазы [286] можно рассматривать как. природный прецедент этого метода пептидной инженерии. В этом случае геометрия координации атомов металла в активных центрах имеет очень много общего с соответствующими фрагментами кристаллических структур медь-имидазольных и цинк-имидазольных. комплексов [661]. Таким образом, обе основные особенности этогО фермента, структура иммуноглобулина и комплекс металла, могуг быть воспроизведены химиками-органиками. [c.246]

    Шульман н сотр. [ИЗ—115] исследовали активный центр карбоксипептидазы А путем измерения релаксации малых молекул, связанных с этим ферментом. Карбоксипептидаза является протео-литическим металлсодержащим ферментом, который катализирует расщепление С-концевой пептидной связи в пептидах и белках. Она имеет молекулярную массу 34600 и содержит 1 атом цинка на молекулу, который обусловливает каталитическую активность, но фермент остается активным при замене 20 + на ионы Мп + или Со2+ [116]. Кристаллическая структура фермента известна [117, 118]. С атомом металла координированы три белковых лиганда, и имеются свободные положения по меньшей мере еще для двух лигандов. Связывание растворителя (НгО) [ИЗ], ингибиторов [114] или фторид-иона [115] на активном центре Мп2+-фермента влияет на релаксацию связанных ядер не только потому, что белок имеет длинное время корреляции, но также вследствие наличия парамагнитного иона металла. Уширение резонансных сигналов растворителя было объяснено тем, что одна молекула воды связывается с ионом Мп2+. Как следует из измерения уширения пиков метильных или метиленовых протонов конкурирующих ингибиторов — индо-лилуксусной, г/7ег-бутилуксусной, бромуксусной и метоюсиуксус-ной кислот — и одновременного определения времен корреляции взаимодействия протонов ингибитора с металлом, релаксация определяется главным образом временем обмена комплекса белок — ингибитор. Используя известные константы Михаэлиса — Ментен и эти данные, можно определить константы скорости всех отдельных стадий реакции фермента с субстратом. [c.393]


    Такая картина наблюдалась для модельного пептида A NH Hj O)4O jH5 (АГТЭ) в присутствии солей, содержащих катионы щелочноземельных металлов, и солей с большими органическими анионами. Имеются веские аргументы в пользу существования прямых ионных взаимодействий такого типа с белками ("связывание ионов") [130, 185, 199, 244]. Расположение анионов в ряду по эффективности связывания с белками сходно с их расположением в рядах по солевым эффектам в случае модельного пептида [c.35]

    Карбоксипептидазы А и В образуются при гидролизе трипсином соответствующих прокарбоксипептидазных предшественников, синтезируемых в поджелудочной железе [187J. Из этих двух ферментов более подробно изучена карбоксипептидаза А, и проведено ее детальное исследование методом рентгеноструктурного анализа [29, 188, 189]. Карбоксипептидаза А быка (КПА) представляет собой фермент, содержащий 307 аминокислот в единственной полипептидной цепи, которая прочно связывает 1 г-ион Zn(II) на 1 моль фермента. Необходимость Zn(ll) для ферментативной активности была впервые продемонстрирована тем, что КПА, свободная от иона металла, неактивна, но активность восстанавливается при добавлении Zn(II) [190, 191]. По-видимому, фермент, не содержащий металла, в основном сохраняет структурные свойства активной КПА [191]. Позже на основе данных рентгеноструктурного анализа [29] было четко установлено, что роль иона Zn(ll) при гидролизе пептидов заключается в связывании субстрата. При протеолизе фермент проявляет стереохимическую специфичность, отщепляя С-конце-вую аминокислоту от пептидной цепи только в том случае, если С-концевая карбоксильная группа свободна и если аминокислота имеет L-конфигурацию [192, 193]. Обычно наблюдается более высокая активность, если остаток С-концевой аминокислоты содержит ароматическую группу или разветвленную цепь [194]. [c.76]

    N1(11 - и Мп 11)-3амещенные карбоксипептидазы. Не опубликовано каких-либо спектральных данных или данных по магнитной восприимчивости, которые могли бы однозначно указывать на геометрию комплекса металла в М1(П)КПА. Возможно, однако, что при связывании с апоКПА катион N (11) оказывается не в тетраэдрическом поле лигандов. Отсутствие известных комплексов N1(11) с пептидами или аминокислотами (включая производные имидазола) с тетраэдрической координацией и тот факт, что два N(aмин-ный)-донорных лиганда не создают достаточно сильного орбитального расщепления, чтобы привести к квадратно-плоскостной структуре [77], позволяют предположить, что ион N (11) в комплексе с КПА может находиться в тетрагонально искаженном октаэдрическом поле. Уменьшение эффекта расщепления поля лигандов для азотсодержащих лигандов в ряду [226] [c.89]

    По-видимому, при замещении d(H), Hg(H) и Мп(П) на эстеразную активность оказывает влияние возможное искажение координируемых остатков в области активного центра. Следовательно, из-за недостатка подробной структурной информации для гидролиза эфиров невозможно провести разумное обсуждение зависимости эстеразной активности от замещения иона металла. Кроме того, Волли и сотр. [233] указывают, что центры связывания субстрата при гидролизе эфиров и пептидов, хотя и перекрываются, могут оказаться неидентичными. [c.92]

    Из гл. 4 мы знаем, что функциональные группы пептидов могут связывать ионы металлов. В данной главе мы обсудим структуры некоторых специфичеоких пептидов и других комплексообразующих агентов, которые продуцируются микроорганизмами и, по-видимому, специально предназначены для связывания железа. [c.205]

    Металлорганические комплексы — основная форма соединений в биологических системах. Целый ряд биоорганических соединений способен связывать металлы в клетках растительных и животных организмов. Образующиеся в результате комплексы отличаются по ряду свойств и, в частности, по прочности связи. По этому признаку металлорганические комплексы можно разделить на группы (Albert, 1958). Одна группа включает вещества, где металл связан настолько прочно, что утрачивает способность к обмену с тем же металлом в радиоактивной форме (при pH 7) порфирины связывают железо, а кобаламин удерживает кобальт именно так. Аминокислоты, пептиды и белки входят в другую группу, где связь металла с этими соединениями также достаточно прочна, но не настолько, чтобы исключалась возможность обмена эта связь менее прочна, чем в таких соединениях, как ЭДТА и 8-гидрооксихинолин, где металл сохраняет способность к обмену. Белки из трех названных соединений образуют наименее прочные соединения (комплексы) и связывание происходит главным образом за счет остатков цистеина и гистидина. [c.28]

    На поверхности глинистых частиц почвы происходит связывание органических веществ. Особое значение имеет прочное взаимодействие гуминовых веществ с глинистыми минералами (рис. 7.6). Во взаимодействии с отрицательно заряженными минералами участвуют аминогруппы, образующие ионную связь, металл-органиче-ские комплексы многовалентных металлов, как Ре, образующие мостик между отрицательно заряженной поверхностью глинистого минерала и карбоксильной группой гуминовой кислоты. Водородные связи определяют связывание полимеров, например реакцион-но-способной свежеобразованной бактериальной слизи, с поверхностью глинистых частиц, и поэтому биологическая активность в почве приводит к образованию стойких органо-минеральных соединений, чего не происходит, например, при смешении торфа с глиной. Органические соединения на поверхности глин защищены как от химического, так и биотического окисления. Попавшие в межслойное пространство даже такие легкодоступные вещества, как пептиды, оказываются недоступными для окисления. В крайнем выражении это ведет к образованию черных глинистых сланцев, вплоть до горючих. С другой стороны, образование органического покрова на поверхности минерала предотвращает его дальнейшее разрушение при выветривании. Органические вещества, связываясь с Ре или А1 на поверхности кристалла, могут блокировать точки роста и предотвращать укрупнение педогенных минералов. [c.285]

    Активирующее влияние ионов металлов на связывание ДАДЛЭ с ц-опиоидными рецепторами происходит при их комплексообразовании с катионсвязывающим участком рецептора, что приводит к уменьшению константы диссоциации комплекса рецептора с пептидом. [c.449]


Смотреть страницы где упоминается термин Пептиды связывание металла: [c.163]    [c.174]    [c.445]    [c.368]    [c.370]    [c.501]    [c.484]    [c.58]    [c.501]   
Неорганическая биохимия Т 1 _2 (1978) -- [ c.152 , c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте