Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

тирозин в бактериях

    Метаболизм фенилаланина и тирозина у животных и бактерий [c.144]

    В некоторых случаях разрушение ароматических соединений бактериальной клеткой начинается с реакций элиминирования. Так, у некоторых бактерий в результате -элиминирования из тирозина освобождается фенол. Чаще наблюдается гидроксилирование и окислительное разрушение боковых цепей, ведущее к образованию производных бензойной кислоты или к различным оксибензойным кислотам [133]. Не- [c.149]


    Как тирозин (II), так и -триптофан (12) могут разрушаться бактериями неокислительным путем, связанным с элиминированием боковой алифатической цепи (в виде пирувата и аммиака) и образованием фенола (54) или индола (39), соответственно (схе- [c.708]

    В настоящее время хорошо изучены реакции декарбоксилирования бактериями аспарагиновой, глютаминовой кислоты, тирозина, лизина, чис-тидина, аргинина и орнитина. Эти реакции нашли практическое применение для количественного определения соответствующих аминокислот. [c.335]

    Образовавшиеся в кишечнике под действием бактерий ядовитые продукты распада тирозина - крезол и феиол — после всасывания обезвреживаются в печени, в которую оттекающая от кишечника кровь попадает через систему воротной вены. Обезвреживание фенола и крезола может происходить двояким путем либо посредством связывания их с серной кислотой, либо путем соединения их с глюкуроновой кислотой. [c.337]

    Много лет назад было установлено, что к числу продуктов, образующихся при росте бактерий, принадлежат некоторые амины. Так, например, из продуктов роста бактерий на средах, содержащих орнитин, лизин, тирозин или глутаминовую кислоту, были выделены соответственно путресцин, кадаверин, тирамин и /г-аминомасляная кислота [192—195]. Дальнейшие исследования показали, что специфические ферменты, присутствующие в некоторых тканях животных и растений, также [c.199]

    Бактерии осуществляют разложение тирозина путем ряда реакций, в результате которых образуются такие продукты, как фенол, п-крезол, п-оксибензойная кислота и др. [1013, 1014]. Превращение в фенол происходит под действием р-тирозиназы отщепляющей боковую цепь [555]. [c.426]

Рис. 12. Биосинтез фенилаланина и тирозина в бактериях. Рис. 12. <a href="/info/567388">Биосинтез фенилаланина</a> и тирозина в бактериях.
    Эти амины образуются также при действии на аминокислоты специфических декарбоксилаз, вырабатываемых рядом бактерий. В настоящее время известны декарбоксилазы для лизина, гистидина, тирозина, аргинина, фенилаланина и глютаминовой кислоты. [c.58]

    Важнейшую роль на всех уровнях организации клеточных форм жизни играют бензохиноны с изопреноидными боковыми цепями. Они служат незаменимыми деталями биохимических механизмов фотосинтеза и дыхания. У всех фотосинтезирующих организмов присутствуют пластохиноны 3,199, в основном, пластохинон-9 (л = 9), которые у растений локализованы в хлоропластах. Митохондрии же растений и нефотосинтезирующих клеток накапливают убихиноны или коэнзимы О 3,200. Способностью к биосинтезу последних наделены все формы жизни от бактерий до млекопитающих. Наш организм в нормальных условиях способен полностью обеспечить свои потребности в коэнзиме Q за счет собственного биосинтеза из поступающего с пищей тирозина через /i-гидроксибензойную кислоту. [c.333]


    Протопласт. Содержимое бактериальной клетки без клеточной оболочки получило название протопласта. Протопласт состоит из цитоплазмы, покрытой мембраной. Разработан метод освобождения протопласта грамположительных бактерий посредством обработки клеток ферментом лизоцимом. Оболочки клеток при этом растворяются, а протопласты сохраняются живыми, способными к росту, делению, синтезу протеинов и нуклеиновых кислот [363]. Цитоплазма представляет собой водянистую или слегка вязкую массу — сложную композицию белков, жиров, углеводов и многочисленных других органических соединений, минеральных веществ и воды. Цитоплазма не гомогенная коллоидная жидкость, она содержит множество субми-кроскопических мембранных структур, выявленных электронной микроскопией. В цитоплазматических белках найдено 20 различных аминокислот, обусловливающих различные свойства белков. Например, аминокислота тирозин имеет спиртовые группы (ОН) в боковой цепи и этим обусловливает гидрофильность цитоплазмы. Липоиды, наоборот, обусловливают гидрофобность цитоплазмы. [c.26]

    Желательно наличие в средах всего набора аминокислот— аланина, аргинина, аспарагиновой кислоты, вали-на, гистидина, глутамино,вой кислоты, глицина, изолейцина, лейцина, лизина, метионина, пролина, серина, треонина, триптофана, тирозина, фенилаланина, цистеина. Однако не все аминокислоты нужны для развития различных микробов. Наряду со свободными аминокислотами некоторые бактерии нуждаются в комплексах аминокислотных остатков — пептидах, пептонах и других белковых веществах. [c.61]

    Тирамин, п-оксифенилэтиламин (листочки, т. пл. 166°) содержится в паразитном грибе lavi eps purpurea (спорынья), живущем в завязи цветка злаков, главным образом ржи. Тирамин образуется из аминокислоты тирозина под действием общераспространенных ферментов, вырабатываемых, например, молочнокислыми бактериями, бациллой СоИ и гнилостными бактериями [c.355]

    Ферменты, обусловливающие эти реакции, — аминокислотные декарбоксилазы— являются специфическими для каждой отдельной аминокислоты (Гале). Декарбоксилазы бактерий, действующие на глутаминовую кислоту, тирозин, орнитин, аргинин и лизин, требуют наличия кофермента, а именно кодекарбоксилазы (ниридоксальфосфата) однако другие декарбоксилазы, среди которых декарбоксилаза гистидина, не нуждаются в этом коферменте. [c.390]

    Биол(угически активные вещества. Заслуживают внимания высокое с- держание триптофана и отсутствие тирозина в грамицидине (пол[шептид из бактерий), Тироциди н содержит значительное количество тирозина, которое равно или превышает содержание в нем триптофана. [c.182]

    В организме человека и белой крысы синтезируются 10 или 20 аминокислот, входящих в состав белков. Остальные аминокислоты, которые должны поступать с пищей и потому называются незаменимыми, синтезируются растениями и бактериями. Аминокислоты, объединяемые под названием заменимых , образуются различными путями. Глутамат получается в результате восстановительного аминирования а-кетоглутарата. Сам глутамат служит предшественником глутамина и пролина. Аланин и аспарат образуются путем трансаминирования соответственно из пирувата и оксалоацетата. Тирозин получается в результате гидроксилирования фенилаланина, принадлежащего к числу незаменимых аминокислот. Цистеин синтезируется из метионина и серина в сложной последовательности реакций, в которой промежуточными продуктами служат S-аденозил-метионин и цистатионин. Углеродный скелет серина происходит от 3-фосфоглицерата. Серин является предшественником глицина Р-углеродный атом серина переносится на тетрагидрофолат. Пути биосинтеза незаменимых аминокислот у растений и у бактерий более сложны и длинны. Они образуются из некоторых заменимых аминокислот, а также из других метаболитов. Аллостерическая регуляция биосинтетических путей, приводя- [c.678]

    Нет сомнения в том, что из гидролизатов белков могут быть получены высокоочищенные Ь-аминокислоты. Тем не менее продажные препараты аминокислот зачастую загрязнены аминокислотными примесями, которые могут быть источником экспериментальных ошибок. В связи с этим микробиологи при приготовлении сред для определения аминокислот посредством бактерий нередко предпочитают применять синтетические ВЬ-аминокислоты, а не Ь-изомеры, выделенные из белковых гидролизатов. Можно привести следующие примеры часто встречающихся загрязнений в полученных из белков препаратах лейцина и глутаминовой кислоты часто содержатся метионин, а в препаратах глутамина — аргинин и аспарагин препараты триптофана бывают загрязнены тирозином, а препараты тирозина — цистином. Выделенный из гидролизатов изолейцин обычно содержит лейцин, и наоборот. Развитие современных хроматографических методов в значительной степени упростило задачу выделения аминокислот, и повсеместное применение этих методов, несомненно, улучшит качество продажных препаратов аминокислот. [c.91]

    Блох [67] установили, что лишь очень небольшое количество азота мочевины, введенной с пищей, включается в аммиак мочи и в белки. Однако в опытах с С -мочевиной было найдено, что мочевина быстро превращается в углекислоту [68, 69]. Расщепление мочевины до углекислоты и аммиака катализируется бактериями, присутствующими в желудке, кишечнике и других частях тела (например, в верхних дыхательных путях) [69]. Добавление заменимых аминокислот, ионов аммония или мочевины к рациону, состоящему из 10 незаменимых аминокислот, дает лучший эффект, чем повышение количества самих незаменимых аминокислот. Из этого можно заключить, что незаменимые аминокислоты в общем медленнее превращаются в продукты обмена, необходимые для роста [70] следовательно, возможны такие экспериментальные условия, при которых ионы аммония будут оказывать более благоприятное влияние на рост, чем смесь незаменимых аминокислот. Как упомянуто выше, некоторые аминокислоты, необходимые для обеспечения роста и азотистого равновесия, могут быть частично замещены заменимыми аминокислотами. Так, у молодых крыс цистин может покрывать от /е ДО /з потребности в метионине [30, 31], а тирозин может восполнить около половины потребности в фенилаланине [32]. Возможность замены метионина гомоци-стеином зависит от наличия в пище витамина В12 и фолевой кислоты или донаторов метильных групп. Возможно, что будут найдены такие условия, при которых рост будет поддерживаться и в отсутствие некоторых других незаменимых аминокислот. Результаты исследований, в которых определялись рост и азотистое равновесие, свидетельствуют лишь о том, что данные функции не обеспечиваются процессами синтеза in vivo. [c.127]


    Юденфренд и Купер [943] осуществили превращение фенилаланина в тирозин в опытах in vitro при помощи ферментной системы, полученной из печени (фенилаланингидроксилаза). Механизм этой реакции сложен по-видимому, для реакции необходимы две белковые фракции, дифосфопиридиннуклеотид, какой-нибудь альдегид, кислород и ионы Fe++ [923, 1134]. Результаты опытов с применением меченого тирозина показали, что обратного превращения тирозина в фенилаланин в организме животных не происходит [944]. Процесс превращения фенилаланина в тирозин наблюдали в мышцах и в печени [224]. Некоторые микроорганизмы способны катализировать образование тирозина из фенилаланина [923], но большинство бактерий, по-видимому, не обладает соответствующей ферментной системой. [c.417]

    Ряд биологически неактивных фенолов, транзиторно появляющихся в организме, образуется либо из катехинов и индолов, либо при метаболизме фенолов, поступающих с пищей. Вероятно, наибольшая концентрация свободных фенолов в организме наблюдается при лечении ревматических заболеваний салициловой кислотой. Маловероятно, что оксигрупны фенолов, за исключением тирозина, необходимы для жизни клеток, так как некоторые виды бактерий, очевидно, совершенно не содержат фенольных соединений (кроме тирозина). Однако катехины и, вероятно, индолы необходимы для координирования деятельности многоклеточных организмов. [c.359]

    Ядовитые фенолы могут образовываться в организме в процессе нормального обмена веществ. Под влиянием бактерий кишечника происходит декарбоксилирование аминокислоты — тирозина, образующегося при гидролизе белка. Обезвреживание таких эндогенных фенолов, а также вводимых извне (в виде лекарственных препаратов), или экзогенных фенолов, происходит путем превращения последних в нетоксичные сложные эфиры серной кислоты, или эфиросерные кислоты, калийные соли которых выводятся с мочой. Образование эфиросерных кислот происходит по схеме  [c.299]

    Аминокислоты обычно подразделяют на шесть основных групп моноаминомонокарбоновые, т. е. содержащие одну аминную и одну карбоксильную группы, вследствие чего растворы их нейтральны,— глицин, аланин, валин, лейцин, изо-лейцин, серин, треонин, цистеин и метионин диаминомонокарбоновые — орнитин, аргинин и лизин, проявляющие в растворах щелочные свойства моноами-нодикарбоновые — аспарагиновая и глутаминовая кислоты, дающие в растворе кислую реакцию диаминодикарбоновые — цистин и диаминопимелиновая кислота, выделенная из белков некоторых бактерий ароматические — фенил-а-аланин и тирозин, характеризующиеся наличием бензольного остатка в молекуле аминокислоты гетероциклические — пролин, оксипролин, гистидин и триптофан. [c.58]

    В этом случае под влиянием ферментных систем ряда бактерий и грибов из аминокислот образуются кетокислоты. Так, при действии Es heri hia соИ из аланина, серина и цистеина можно получить пировиноградную кислоту, из глутаминовой — а-кето-глутаровую, из тирозина — и-оксифенилпировиноградную. [c.108]

    Соединение, возникающее в этой реакции, называется ацил-аденилатом аминокислоты, а самая реакция называется реакцией активирования аминокислот. Каждая из 20 аминокислот имеет свой специфический фермент, катализирующий эту реакцию. Подобные ферменты найдены во всех клетках и тканях, где их искали, — в бактериях и простейпшх, в тканях растений и высших животных, — словом, повсюду. Два специфических фермента, активирующих триптофан и тирозин, выделены в кристаллическом виде, многие другие получены в обогащенном состоянии й со специфичностью только к одной единственной аминокислоте, т. е. отделенные от гомологических ферментов, активирующих другие аминокислоты. Даже химически столь близкие аминокислоты, как валин и лейцин, требуют различных специфических ферментов для активирования. [c.432]

    Другим новым методом количественного определения аминокислот является микробиологический метод. Для этой цели используются различные культуры молочнокислых бактерий, культура Ьеисопоз1ос тезеп1его1йе8 и некоторые штаммы Иеигозрога. Интенсивность роста культуры определяется по мутности бактериальной суспензии, по количеству образующейся молочной кислоты или путем взвешивания мицелия [64—66]. Одну из модификаций микробиологического метода представляет метод определения аминокислот по количеству углекислоты, образующейся в результате ферментативного декарбоксилирования аминокислот бактериальными препаратами. Таким путем можно определить тирозин, гистидин, лизин и глутаминовую кислоту [67]. Для количественного определения какой-нибудь аминокислоты микробы высеваются на синтетическую среду, содержащую все необходимые аминокислоты и факторы роста, за исключением исследуемой аминокислоты. [c.34]


Смотреть страницы где упоминается термин тирозин в бактериях: [c.138]    [c.139]    [c.142]    [c.149]    [c.151]    [c.588]    [c.22]    [c.265]    [c.211]    [c.231]    [c.699]    [c.158]    [c.253]    [c.392]    [c.74]    [c.158]    [c.528]    [c.139]    [c.206]    [c.415]    [c.49]   
Биохимия Том 3 (1980) -- [ c.149 , c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Тирозин

Тирозин тирозин



© 2025 chem21.info Реклама на сайте