Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пределы парафинов

    Температура начала кристаллизации — максимальная температура, при которой в топливе невооруженным глазом обнаруживаются кристаллы. Эта температура характеризует в основном температуру фильтрования. Температура кристал -лизации зависит от углеводородного состава топлив и, в первую очередь, от их температуры плавления. С увеличением молекулярной массы температура плавления повышается. Однако температура плавления при одной и той же молекулярной массе в зависимости от строения углеводорода колеблется в очень широких пределах. Углеводороды с разветвленным строением имеют, как правило, более низкую температуру начала кристаллизации. Наиболее высокой температурой начала кристаллизации отличаются парафиновые углеводороды, затем ароматические и нафтеновые. [c.31]


    При работе с газообразными парафиновыми углеводородами очень важно знать пределы их взрываемости, чтобы проводить окисление в условиях, лежащих вне этих пределов (табл. 115). Для этого необходимо применять большой избыток воздуха или углеводорода. Поскольку концентрации желаемых продуктов окисления в конечном газе будут в первом случае невелики, их выделение потребует больших затрат во втором случае вследствие малых степеней превращения углеводорода за один проход через реактор необходимо осуществлять рециркуляцию газов. Выходы, как правило, невелики, так как образуются значительные количества окиси и двуокиси углерода. [c.433]

    Следствием большого влияния самовоспламенения топлива на стабилизацию процесса горения является резкая зависимость пределов устойчивого горения в- воздушно-реактивных двигателях от химического состава топлива. На рис. 53 приведены результаты исследования влияния химического состава топлива на пределы устойчивого горения. Из этих данных следует, что при низких температурах топлива наибольшими пределами устойчивого горения характеризуются парафиновые углеводороды, наименьшими — ароматические. С повышением температуры пределы стабилизации ароматических углеводородов увеличиваются, а парафиновых и нафтеновых уменьшаются или остаются постоянными. Пределы устойчивого горения являются характеристикой возможностей топлива стабилизировать пламя. Чем шире пределы устойчивого горения, тем лучше условия для стабилизации пламени н надежнее работа двигателя на различных режимах. [c.82]

    Этот процесс применен в Германии для получения высокомолекулярных спиртов. Для синтеза используют узкую фракцию, кипящую в интервале 15—20°. Крекинг-олефины (см. стр. 68) всегда смешаны с довольно значительным количеством кипящих в тех же пределах парафиновых углеводородов. [c.218]

    Групповой химический состав сырья более значительно влияет на выход и качество продуктов крекинга. В большинстве вакуумных газойлей, направляемых на каталитический крекинг, в зависимости от типа исходной нефти содержание в них групповых компонентов колеблется в довольно широких пределах парафиновых 15 — 35 %, нафтеновых 20 — 40 % и ароматических 15 — 60 %. [c.104]

    Однако высокомолекулярные алифатические углеводороды не удается получать из нефти с той степенью чистоты и однородности, которые требуются для дальнейшей химической переработки. Из каменноугольной смолы фракционированной перегонкой иногда с последующей кристаллизацией легко можно получать индивидуальные соединения. Применение аналогичных методов при переработке нефти вследствие большей сложности ее состава не позволяет достигнуть этой цели. Выделение фракций с широкими пределами кипения, содержащих углеводороды с 10—20 углеродными атомами в молекуле, также непригодно для получения сырья, предназначаемого для последующей химической переработки. Наиболее пригодные для переработки углеводороды нормального строения в подобных широких фракциях представляют собой смеси с парафиновыми углеводородами изостроения (с различной сте- [c.8]


    Гомогенное каталитическое хлорирование керосиновой фракции парафинового основания с пределами выкипания 179—265° проводят следующим образом [32]. К 5000 кг керосина добавляют около 2 кг иода. Процесс проводят в освинцованном аппарате, снабженном мешалкой и [c.150]

    Требование, чтобы исходное парафиновое сырье выкипало в совершенно определенных пределах и тем самым имело бы определенный молекулярный вес и длину углеродной цепи, предполагает, что при окислении, как уже упоминалось раньше, образуются все теоретически возможные жирные кислоты. Все метиленовые группы различных угле- водородов окисляются с одинаковой степенью вероятности (см. также главу 9, стр. 586). Для того, чтобы получить максимальный выход кислот (С 2— 18), углеводороды исходного сырья ие должны иметь ии слишком короткую, ни слишком длинную цепь. Поэтому речь может идти [c.447]

    Так, для разделения рассмотренной выше пятикомпонентной смеси парафиновых углеводородов С1—Сз стоимость затрат для семи схем находится в пределах 67о от стоимости затрат при оптимальной схеме и наиболее высокая стоимость всего лишь на 22% больше минимальной [44]. [c.139]

    Фракции, после удаления н-парафиновых углеводородов, промывались дистиллированной водой и после сушки над хлористым кальцием перегонялись в присутствии металлического натрия в тех же пределах температур кипения. [c.129]

    Чтобы достичь в парафиновом дистилляте высокого содержания парафина, этот продукт стараются вырабатывать из наиболее высокопарафинистых нефтей. Для получения хорошей кристаллической структуры парафинового дистиллята пределы его кипения (особенно конец кипения) должны быть строго ограничены. Оптимальные установленные практикой пределы выкипания парафиновых дистиллятов лежат в интервале 325—460° Сужение [c.24]

    Содержание парафина в основной фракции парафинового дистиллята той или иной нефти (т. е. фракции, выкипающей в пределах 325—460°) зависит от природы и качества этой нефти и [c.25]

    Основные свойства парафиновых дистиллятов, выкипающих в пределах 320—460° [c.26]

    Из данных табл. 2 видно, что вязкость основных парафиново-дистиллятных фракций нефтей при 50 " находится в пределах 7,7— 12,6 сст. Средняя температура плавления содержащегося в этих фракциях парафина лежит в пределах 45—50°. Температура насыщения фракций парафином колеблется от 16 до 38°. Темпе- [c.26]

    Здесь мы остановились подробно на ряде отдельных свойств парафиново-дистиллятных фракций по той причине, что отмеченные в связи с этим общие положения и закономерности (связь между температурой насыщения, пределами кипения и содержанием парафина, зависимость кристаллической структуры от фракционного состава и четкости фракционировки, идентичность размера и формы кристаллов для одинаковых дистиллятов нефтей [c.27]

    Исходным сырьем для производства базовых авиабензинов являются обычно прямогонные керосино-соляровые фракции. При переработке дистиллятов нафтенового основания получается больше базового авиабензина и с более высоким октановым числом, чем при переработке сырья, богатого парафиновыми углеводородами. Материальный баланс переработки парафинистого дистиллята (удельный вес 0,875, пределы кипения 258—440°) одной из нефтей приведен в табл. 41. В обеих ступенях применялся синтетический катализатор [55]. [c.223]

    Количество насыш енных (неолефиновых) углеводородов, образуюш,ихся при гидрополимеризации, тем больше, чем выше концентрация серной кислоты. Так, например, в смеси пентенов с 98%-ной серной кислотой 70% исходного продукта превращаются в полимеризат, выкипающий в пределах 90—350° п состоящий в большей части пз парафиновых углеводородов. При этом растворимая в серной кислоте часть, выделяемая при разбавлении ледяной водой, оказывается сильно ненасыщенной и обнаруживает до трех и более двойных связей на молекулу. Реакция протекает по карбониум-ионному механизму. В присутствии концентрированной серной кислоты водород олефинов может переноситься из одной молекулы в другую, причем одна молекула превращается в парафин, а другая в диолефин, который еще раз может служить донором водорода, в то время как моноолефин является акцептором. [c.62]

    В технических микрокристаллических парафинах, выделенных из более высококипящих фракций, чем парафиновые дистилляты, обнаружено преобладание структур нафтенового и изоалка-нового характера. Они состоят главным образом из углеводородов, содержащих 34—60 углеродных атомов в молекуле, и имеют температуру плавления в пределах 60—90° [53]. О высокомолекулярных парафинах, получаемых синтез-ом Фишера—Тропша, см. стр. 128. [c.54]

    Получающиеся при синтезе под нормальным и средним давлениями высокомолекулярные парафиновые углеводороды, парафины разделяют дистилляцией и последующей кристаллизацией при охлаждении. Они плавятся в зависимости от метода обработки в пределах 40—60°. Как уже указывалось, выход царафинов при синтезе под средним давлением в 6—7 раз больше, чем при синтезе под нормальным давлением [75]. [c.128]


    Незначительная разность температур кипения обусловливает и то, что на хлорирование следует направлять по возможности узкие фракции высокомолекулярных парафиновых углеводородов, так как при последующем разделении пределы кипения мопохлорпроизводного низкокипящего углеводорода и нехлорированного высокомолекулярного углеводорода могут взаимно перекрываться. [c.197]

    Рассмотренные выше продукты конденсации ни в какой мере не представляют собой химически однородных соединений и иутем перегонки могут быть разделены на три фракции. Первая фракция с пределами кипения 340—370° не снижает температуры застывания масел. В равной мере не снижает температуры застывания масел и вторая фракция, состоящая из более высококипящих парафиновых компонен-гов (молекулярный вес около 1000). Лишь третья фракция, состоящая из высоковязких или полутвердых продуктов высокого молекулярного веса, обладает действительной активностью как депрессор. [c.244]

    Выход нитропарафипа при газофазном нитровании парафиновых углеводородов практически не зависит от температуры нитрования (в пределах температур 150—420°), если при этом применяют оптимальные соотношения углеводород азотная кислота и соответствую- щую оптимальную продолжительность пребывания реагирующей смеси 280 [c.280]

    Неочищенный продукт в зависимости от пределов кипения (когазин I—140—180°, когазин II—180—250°) содержит различные количества веществ, поглощаемых раствором пятиокиси фосфора в серной кислоте. Эти примеси сильно мешают сульфохлор ироваиию. Поэтому их гидрированием под высоким давлением превращают в парафины или удаляют очисткой, например, концентрированной серной кислотой. При очистке серной кислотой, практикуемой в нефтяной промышленности, составные части, подлежащие удалению, теряются. При восстановлении же под высоким давлением они превращаются в парафиновые углеводороды, участвующие в сульфохлорировании. Речь идет здесь в первую очередь об олефинах, далее — о небольших количествах спиртов, альдегидов и кислот. [c.396]

    При действии хлорциана на парафиновые углеводороды в присутствии перекисных соединений образуются нитрилы (см. стр. 504). Изучая реакцию на примере н-гептана. Граф [946] установил, что при этом получается смесь изомерных цианистых гептилов, кипящая в пределах 84—95° (23 мм рт. ст.). [c.574]

    Температура застывания характеризует ту минимальную температуру, при которой обеспечивается перекачка или транспортировка топлива. Она зависит от фракционного состава увеличение содержания легких фракций снижает температуру застывания. На температуру застывания дизельного топлива также оказывает влияние углеводородный состав топлив и строение углеводородов. Значительное содержание нормальных парафиновых углеводородов повышает, а сильпоразветвленных углеводородов изомерного строения — снижает температуру застывания дизельных топлив. В зависимости от марки дизельного топлива ГОСТами регламентируется температура застывания в довольно широких пределах от —10 до —60 °С. [c.40]

    Наконец, из изложенных выше положений о связи между химической природой твердых углеводородов нефти и их физикохимическими свойствами следует, что парафины с равной температурой плавления, но выделенные из сырья различного фракционного состава не являются равноценными по химической природе. Так, технический парафин с температурой плавления 50—52°, полученный из легкого дистиллята, выкипающего в пределах 350— 420°, может представлять в основном смесь н-алканов примерно от С21 до С27 с относительно небольшой примесью циклических и изомерных углеводородов. Но если парафин с той же температурой плавления 50—52° будет выделен тем или иным способом из более тяжелого сырья, например из дистиллята с пределами кипения 420—500° путем дробного осаждения, то такой парафин будет содержать высокий процент углеводородов циклических и изостроения. Точно так же и легкоплавкие парафины, получаемые для синтеза высокомолекулярных жирных спиртов, из концевых фракций дизельных топлив и состоящие в основном из н-алканов, совершенно пе будут идентичны легкош1авким парафинам, которые могут быть выделены из фильтратов парафинового производства при их дополнительной депарафинизации избирательными растворителями. [c.58]

    Низкотемпературные свойства. В отличие от бензинов в состав дизе/лных топлив входят высокомолекулярные парафиновые углево — дороды нормального строения, имеющие довольно высокие темпера — туры плавления. При понижении температуры эти углеводороды вы — падают из топлива в виде кристаллов различной формы, и топливо мутнеет. Возникает опасность забивки топливных фильтров кристаллами парафинов. Принято считать, что температура помутнения характеризует нижний температурный предел возможного применения дизельных топлив. При дальнейшем охлаждении помутневшего топлива Kpn Tavwvbi парафинов сращиваются между собой, образуют пространственную решетку, и топливо теряет текучесть. Температура застывания — величина условная и используется для ориентировочного определения возможных условий применения топлива. Этот пока атель принят для маркировки дизельных топлив на следующие 3 [c.117]

    На рис. 2 показаны микрофотографии образцов парафиновых дистиллятов, полученных из одной и той же нефти, имеющих одинаковые вязкости и выкипающих на 95% в одинаковых пределах, но отличающихся друг от друга четкостью отфракционировки. Разница в кристаллической структуре этих образцов настолько очевидна, что пояснений не требует. [c.25]

    В отношении кристаллической структуры парафиново-дистиллятных фракций, выделенных из нефтей различной природы и происхождения, работами ГрозНИИ установлено следующее обстоятельство, имеющее весьма важное прикладное и теоретическое значение. Оказалось, что фракции парафинового дистиллята, полученные при одинаково высокой четкости ректиг фикации из нефтей любого происхождения и состава, выкипающие в одинаковых пределах (325—460°) и охлажденные в равных условиях, дают крупные, хорошо выраженные кристаллические структуры, совершенно одинаковые как по характеру, так и по форме кристаллов. Отличаются эти фракции лишь количеством вьщелившегося парафина. Данное положение было проверено и оказалось действительным не только для нефтей Советского Союза, но и для ряда зарубежных нефтей самого различного происхождения. [c.27]

    Основную массу и-алканов, содержапщхся в дистиллятах нефтяных масел, составляют углеводороды от с температурой плавления 28° и температурой кипения 318°, примерно до Сщ с температурой плавления 74,6° и температурой кипения 498°, а в отдельных случаях и до С4ц с температурой плавления 81° и температурой кипения 536°, В парафиновые дистилляты, кипящие обычно в пределах от 300—325 до 450—475°, могут входить к-алканы от Сх, и Сх с температурами плавления 21 и 28° до С30 и С32 с температурами плавления 64,7 и 69,6° и температурами кипения 456 и 476°. [c.41]

    Для индивидуальных углеводородов температуры перехода из одной модификации в другую изучены только для м-алканов. Для изоалканов и циклических углеводородов данные по температурам перехода имеются только для некоторых главным образом низкомолекулярпых представителей этих углеводородов. Эти значения температур перехода для -алканов приведены в табл. 5. Из данных табл. 5 видно, что для твердых -алканов разность между температурами плавления и температурой перехода составляет примерно 3—12° при некоторой тенденции этой разности к уменьшению по мере повышения температуры плавления -алканов, хотя строгой закономерности в этом и не наблюдается. Для технических же парафинов (средняя температура плавления порядка 50°) разница между температурой плавления и температурой перехода составляет 15—20° и существенно уменьшается с повышением температуры плавления. При этом для парафинов широкого фракционного состава отмечается более высокая величина этой разности, чем для узких его фракций. Для большинства товарных парафинов, вырабатываемых из парафиновых дистиллятов, температура перехода из мягкой волокнистой аллотропной формы в хрупкую пластинчатую лежит в пределах 30—33°. Здесь следует отметить, что температура перехода для технических парафинов и зависимость ее от температуры плавления, молекулярного веса, фракционного состава, химической природы остается еще весьма мало изученной, несмотря па большую важность этого вопроса. [c.60]

    Вследствие рассмотренного выше область применения процессов депарафинизации кристаллизацией без растворителей ограничивается переработкой сырья невысокой вязкости с ограниченным верхним пределом температуры кипения, хорошо отректи-фицированного от высококипящих фракций для сохранения его крупнокристаллической структуры. Процессы депарафинизации этой группы применяют главным образом для переработки парафиновых дистиллятов вязкостью порядка 8—12 сст при 50°, выкинаюпщх в основном в пределах 325—460°. Целевым продуктом депарафинизации парафиновых дистиллятов является гач, из которого после обезмасливания и очистки получают технические парафины различных марок. Депарафинизацию парафиновых дистиллятов проводят при температурах порядка 0° и выше, чтобы вязкость жидкой фазы фильтруемого продукта была не слишком высокой и процесс фильтрпрессования протекал достаточно производительно. [c.95]

    В особенности в количественном выражении, параметров генетичжкой типизации нефтей для всех трех провинций нет. В каждой из них отмечаются свои величины и свой набор генетических показателей. Наиболее универсальны параметры, отражающие в первую очередь структурные особенности парафиновых цепей, затем - ароматических и нафтеновых УВ. Однако численные значения отношений или "процентного содержания" показателя состава даже в нефтях, приуроченных к одноименным стратиграфическим комплексам, но в разных тектонических зонах, существенно разнятся. Так, например, один из универсальных показателей, отражающих структуру парафиновых цепей, Ц численно изменяется в нефтях "нижнепермского" генотипа от 5,7 до 11, в нефтях средне- и верхнекаменноугольных отложений от 5,2 до 10,6, нижнекаменноугольных — от 6,5 до 19,6, средневерхнедевонских - от 6,2 до 14,4. Эти данные приведены для всех трех нефтегазоносных провинций. В пределах каждой [c.40]

    В пределах Восточно-Европейской и Сибирской платформ выделяют протерозойский и палеозойский мегациклы, в предгорных прогибах Предкавказья — мезозойский и кайнозойский мегациклы. Следует отметить, что нефти мегациклов обладают общими специфическими чертами, по которым нефти разных мегациклов существенно различаются. Было отмечено, что у нефтей разных мегациклов неодинаков углеводородный состав нефти для ранне- и среднепозднепалеозойских нефтей характерны в основном парафиновые УВ, для мезозойских — парафиновые и ароматические, кайнозойских - нафтеновые и ароматические. [c.107]

    Химический состав легких парафиновых и цнклоиарафиновых фракций, выкипающих в пределах 40 —102° [c.25]

    В табл. 8 приведены данные по раснределению парафиновых углеводородов с прямой цепью и разветвленных, а также циклопентанов и цикло-гексанов в некоторых типичиых легких керосинах (с пределами выкипа- [c.25]

    Химический состаи газойля и масляного сырья в общем соответствует рассмотренному выше постепенному уменьшению содержания парафиновых углеводородов и увеличению содержания ароматических с возрастанием пределов выкипания нефтяных продуктов. Существует разница между сырыми нефтями, богатыми и бедными твердыми парафинами. Содержание парафиновых углеводородов в тяжелых фракциях нефти, богатых твердым парафином, уменьшается с увеличением пределов выкипания минимум на 20—25%, а затем остается постоянным, в то время как в нефтях, бедных твердым парафином, содержание парафиновых углеводородов улкньшается до полного их исчезновения. [c.28]

    Церезины и товарные микрокристаллические парафины вообще обладают более высокими температурой плавления, молекулярным весом и пределами кипения, чем обычные товарные парафины. Это определяется пределами перегонки парафиновых дистиллятов, из которых выделяется парафин на фильтрпрессе и при выпотевании. Верхний предел выкипания парафиновых дистиллятов из пенсильванской нефти соответствует температуре около 285° при давлении 10 мм рт. ст. и для некоторых тексасских нефтей около 313°. [c.41]

    Месторождение Мид-Континента, взятое в целом, по-видимому, еще и в настоящее время можно считать наиболее значительным месторождением нефти в мире [5, 7, 9]. Оно включает в себя Ок.т1ахому, Канзас, Северный, Центральный и Западный Тексас, Северную Луизиану и Мексику. Продуктивные горизонты простираются от ордовикских слоев до миоцена. Мид-континентские нефти более тяжелые и содержат больше сернистых соединений и асфальтовых веществ, чем пенсильванские нефти. Удельный вес их изменяется в пределах 0,810—0,930, содержание серы в среднем составляет около 0,5%. Однако в нефтях Западного Тексаса и Арканзаса содержание серы обычно составляет от 1,0 до 1,5%. Большинство нефтей относится к парафиновым, поэтому они без труда могут быть использованы в качестве сырья для производства смазочных масел, но так как среди нефтей этого месторождения имеются и парафиновые и нафтеновые нефти, то нефти всего месторождения в целом могут характеризоваться как нефти смешанного основания. [c.53]


Смотреть страницы где упоминается термин Пределы парафинов: [c.753]    [c.9]    [c.246]    [c.247]    [c.446]    [c.26]    [c.26]    [c.37]    [c.43]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.23 , c.24 ]




ПОИСК







© 2025 chem21.info Реклама на сайте