Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Константы скорости реакции время

    Константа скорости реакции омыления этилацетата едким натром при 283 К равна 2,38, если концентрацию выражать в моль/л, а время — в минутах. Вычислите время, необходимое для омыления 50% этилацетата, если смешать при 289 К 1) 1 м 0,05 н. раствора этилового эфира уксусной кислоты с 1 м 0,05 н. NaOH 2) с 1 м 0,1 н. NaOH 3) с 1 м 0,04 и. NaOH. [c.334]

    Проходящие в несколько этапов реакции, которые можно представить одним стехиометрическим уравнением, а ход их описать одним кинетическим уравнением, называются сложными. Константа скорости реакции, входящая в уравнения (УП1-9) и (Vni-10), инвариантна по концентрации, но зависит от температуры. Если скорость реакции в гомогенной системе можно описать приведенными кинетическими уравнениями, то размерность константы скорости реакции п-го порядка будет следующая [время]- [концентрация]" . Для реакций первого порядка k имеет размерность [время]-.  [c.208]


    Здесь 2 — среднее время пребывания дисперсной фазы р (са, I) и р сА, ) — плотности функций распределения капель по концентрации веш ества А на входе и в объеме реактора соответственно /4. — скорость (интенсивность) коалесценции капель — константа скорости реакции а — переменная интегрирования. [c.75]

    Из кинетики ядерной поляризации можно определять константы скорости реакции, времена ядерной релаксации и коэффициенты поляризации последние зависят от магнитных и обменных взаимодействий в радикальной паре и времени жизни радикалов. [c.297]

    Дальнейшая обработка данных по уравнениям гомогенной химической кинетики позволяет вычислить порядок реакции, константу скорости реакции, времена полураспада для первичного процесса гибели радикал-ионов [76]. Подобным путем могут [c.19]

    В том случае, когда неизвестны кинетические константы скорости реакции, время пребывания принимают по практическим данным (из регламента цеха). [c.186]

    Уменьшение констант скорости во время реакции обмена можно объяснить протеканием вторичных реакций. Действительно, окись пропилена реагирует с образованием промежуточного соединения, которое затем медленнее омыляется. Это нужно учитывать при промышленном производстве и быстро удалять образовавшуюся окись пропилена из реакционного раствора [12]. [c.72]

    Рассмотрим случай, в котором концентрация газа 1 на поверхности намного ниже концентрации газа 2. Подобный случай наблюдается при абсорбции ЫНз совместно с СОо, так как растворимость N1 3 намного больше растворимости СО2. Если порядок реакции равен единице по концентрации обоих реагентов, то время реакции для каи<дого газа равно обратной величине произведения константы скорости реакции на поверхностную концентрацию другого газа. Следовательно, если (50)1 ( о)г будет намного меньше [c.112]

    Обрыв цепей происходит вследствие образования по реакции (7) стабильного свободного радикала ингибитора In, сравнительно мало активного и не способного к продолжению цепи окисления, но в то же время легко взаимодействующего по реакции (8) с активными радикалами R или ROO и обрывающего цепи окисления. Причем константа скорости реакции (8) на несколько порядков выше, чем для реакции (7) [ 7=10 - -- 105 л/(моль-с), Й8 107+10 л/(моль-с)]. Очевидно, что радикалы In являются более активными ингибиторами окисления по сравнению с исходной молекулой ингибитора. Высокая эффективность ингибирующего действия свободных радикалов при окислении топлив и масел обусловлена также участием радикалов In в реакциях переноса электрона и в реакциях тушения возбужденных состояний углеводородов. [c.40]


    Наличие или отсутствие сопутствующей молекулярной реакции с участием от 10 до 50% продукта,в зависимости от углеводорода в настоящее время не может быть ни доказано, ни опровергнуто. Действительно, невозможно объяснить, каким образом пропилен и окись азота дают одинаково низкие предельные скорости разложения при добавлении к различным углеводородам, если исключить, что остаточная реакция носит иной характер и, поэтому она, возможно, является молекулярной. Существует, однако, расхождение между опытами по ингибированию и фотохимическими исследованиями, так как в первом случае результаты указывают на то, что окись азота лишь в 10 раз более эффективна, чем пропилен, для удаления радикалов, во втором случае интересующее нас отношение значительно выше. Это отношение может быть измерено путем определения констант скорости реакций метил-радикалов, полученных фотохимически, раздельно с пропиленом и окисью азота. Устранению этих расхождений поможет дальнейшая экспериментальная работа-в условиях низких конверсий, которая даст более надежные экспериментальные данные. [c.27]

    Если константы. скорости реакции и времена пребывания в отдельных ступенях каскада будут соответственно одинаковы, то зависимость (У1П-311) упрощается и имеет вид  [c.311]

    Если константа скорости реакции и времена пребывания в отдельных ступенях каскада одинаковы, то прямые на графике будут иметь одинаковый наклон, поскольку в этом случае К01 = = К02 =. .. КОт. [c.312]

    Оценим величину константы скорости реакции, при которой можно полагать толщину фронта реакции много меньше радиуса капли. Определим характеристическое время химической реакции как время, в течение которого концентрация экстрагента при тп= уменьшается в е раз Допустим, что в начальный момент времени с, =Сг =Сго по всему объему капли. Тогда Характеристическое время диффузии при наличии циркуляции жидкости в капле определим из решения уравнения Кронига и Бринка. Уменьшению концентрации экстрагента в е раз соответствует значение р< 0,62, которое достигается при т 0,02 (см. приложение 1). Следовательно, 0,02/ /01 и из условия /х < найдем, что > ЮО. [c.278]

    В работе [32] показано, что при смешении н-пентана и н-гексана скорость изомеризации н-пентана снижается, в то время как скорость изомеризации н-гексана увеличивается (рис. 1,19). Эти результаты соответствуют гипотезе авторов [32] о том, что н-гексан адсорбируется сильнее, чем н-пентан. Так как молекулы н-пентана и н-гексана достаточно малы, чтобы не задерживаться в порах морденита, то диффузия в порах не должна оказывать влияние на константу скорости реакции. Следовательно, единственное объяснение наблюдаемого явления - это преимущественная адсорбция н-гексана на активных центрах морденита. Статистический анализ, проведенный в работе [32], показывает, что модель, соответствующая преимущественной адсорбции н-гексана, более корректна. [c.34]

    Объемная скорость представляет собой объем исходной смеси (при 15,5 °С и атмосферном давлении), прошедшей за 1 мин через единицу объема катализатора. Найти среднее время контакта при объемной скорости, равной 54 мин- . Определить константу скорости реакции при том же времени контакта и при условии, что реакция протекает по уравнению второго порядка. [c.169]

    Формулируют дифференциальные уравнения, описывающие одновременно протекающие и влияющие друг на друга процессы химическую реакцию, диффузию, теплопередачу и потерю напора. Такие данные, как константы скорости реакции, коэффициенты диффузии, теплопередачи и трения, могут быть получены путем соответствующих корреляций или экспериментально. После подстановки этих данных в дифференциальные уравнения последние могут быть решены. Во многих случаях, особенно в процессах гетерогенного катализа, указанные уравнения решаются без помощи электронных вычислительных машин лишь с большим трудом. Отметим, что в настоящее время производство и применение математических машин непрерывно возрастает. В весьма недалеком будущем электронные вычислительные машины могут стать серьезным конкурентом опытных установок. [c.340]

    Уравнение (XVH, 4) для л = т (время), у = с (концентрация) н а = k (константа скорости реакции) описывает кинетику химического процесса. Интегрирование (XVH, 4) дает для п = 1 [c.444]

    Концентрации конечных продуктов Aj монотонно возрастают со временем 1. Если все реакции (11.33) протекают по одинаковому порядку а и константа скорости реакции образования вещества Af равна kj, то прирост концентрации любого конечного продукта за время < равен  [c.69]

    Различие между формулами ( 1.63) и ( 1.66) физически легко объяснимо, в случае, когда выполнено условие ( 1.61), реакция практически завершается за время, много меньшее того, которое необходимо частицам реагента для проникновения в застойные зоны. Поэтому в таком процессе влияние застойных зон на превращение реагента не чувствуется и параметры диффузионной модели должны быть такими же, как в случае, если бы застойные зоны были отгорожены от проточной части ячеек непроницаемыми перегородками. Другими словами, норовое пространство зернистого слоя в этом случае может рассматриваться как совокупность ячеек идеального смешения без застойных зон, объем которых равен объему проточной части зернистого слоя. Если же реакция идет настолько медленно, что выполняется условие ( 1.64), то за время, необходимое для достижения в реакторе заметной степени превращения, успевает установиться динамическое равновесие между частицами реагента, находящимися внутри и вне застойных зон. При этом застойные зоны, естественно, влияют на величин параметров и и II, определяемые формулами ( 1.66). Неравенства ( 1.61) и ( 1.64) можно переписать в более удобной форме, введя в них вместо константы скорости реакции к число ячеек по длине реактора N. Эти величины тесно связаны между собой, так как заметная степень превращения исходных веществ может быть достигнута на временах порядка к и длинах Ь — N1 — ц//с. Положив в формуле ( 1.53) вых/ вх = = 1, находим, что, эта степень превращения [c.232]


    Для гомогенных газовых реакций первого порядка энтропия активации часто бывает незначительной и ею можно пренебречь. Полагая, что AS О, определите константу скорости и время полупревращения исходного вещества при комнатной температуре (300 К), если для реакции теплота активации а) 63 10 Дж/моль б) 84 10 Дж/моль в) 105 10 Дж/моль. [c.381]

    Поскольку с повышением температуры скорость реакции возрастает, время, необходимое Д.ИЯ проведения реакции, соответственно со-краищется. Следовательно, еслп при двух температурах /1 и константы скорости реакции соответственно равны К1 и К2, то время [c.268]

    Величина А имеет размерность частоты [(время)- ] только в том случае, если к — константа скорости реакции нервого порядка. Более целесообразно назвать А фак- тором Аррениуса. [c.66]

    Для инженерных расчетов необходимо знать константу скорости реакции и ее энергию активации в заданйых условиях, что позволит вычислить время, необходимое для ее проведения с определенным выходом конечного продукта. При этом следует выявить лимитирующую стадию для организации процесса таким образом, чтобы свести к минимуму кинетическое и диффузионное сопротивления системы [3.41]. [c.72]

    Оксо-синтез—реакция между олефинами, водородом и окисью углерода, проводимая с целью получения окисленных соединений, главным образом альдегидов, которые впоследствии можно гидрировать в спирты. При этом применяются температура 150—205 °С и давление 150—300 ат катализатором служит кобальт (в первоначальном процессе использовали твердый катализатор Фишера— Тропша). Активным агентом является дикобальтоктакарбонил [Со(С04) з. в установке с неподвижным слоем твердого катализатора сырьем может Служить жидкий гептен, который подается с объемной скоростью 0,4 ч . В случае применения пасты ее прокачивают через реактор с объемной скоростью 1,3—3 тогда как объемная скорость газа составляет 250 Катализатором является 2,5%-ный нафтенат кобальта на носителе. Порядок величины константы скорости реакции в жидкой фазе к= =0,02—0,07 мин при температуре 110 °С и давлении около 200 ат. В настоящее время опубликованы обзоры по оксо-синте- [c.330]

    В промышленности широко используется проведение реакций в струе газа, проходящего через реактор, который может быть или пустым, играя роль только области, где поддерживается постоянная температура, или заполненным слоем зер-неного катализатора. Примерами реакций, осуществляемых в потоке в промышленных масштабах, могут служить реакции термического и каталитического крекинга нефтепродуктов, каталитического алкилирования, иолимеризации, гидро- и дегидрогенизации углеводородов, дегидратации и дегидрогенизации спиртов, гидратации олефинов, галоидирования, нитроваиия охислами азота, синтеза аммиака, получения серной кислоты контактным способом, синтеза моторного топлива н т. п. Поэтому и лабораторные опыты по изучению кинетики многих в.ажных широко применяемых в промышленности реакций проводятся также в потоке. Вследствие того, что реакции этого типа проводятся обычно при постоянном давлении и сопровождаются в большинстве случаев изменением объема участвующих в реакции веществ, уравнения кинетики этих процессов должны отличаться от уравнений, выведенных выше для условия ПОСТОЯННОГО) объема. Кроме того, и сам метод расчета кон-стаит скоростей реакций, протекающих в потоке, должен отличаться от методов расчета констант скоростей реакций,осуществляемых при постоянном объеме, так как очень трудно определить время пребывания реагирующих веществ в зоне реакции (так называемое время контакта). [c.48]

    J. Константа скорости реакции, имеющей порядок /г при 303 К, равна 3,0 - 10 л моль с" . Определите константу скорости а) в (см ) моль / мин и б) в (см ) / молекула с . Рассчитайте начальную скорость расходования и время полураспада в секундах для начальной концентрации вещества с,, = 0,042 моль/л. Опр< делите время, за которое концентрация реагирующего вещества достг1гает 0,002 моль/л.  [c.346]

    Насколько образование такого ассоциата действительно ускоряет реакцию можно определить, сравнив константы скорости реакции КОг-с двумя фенолами, имеющими очень близкие прочности О—Н-связи с 2,6-диметилфенолом и 2,б-ди-7 ре7 -бутилфено-лом. Пероксидный радикал образует водородную связь с первым и не может образовать ее со вторым фенолом из-за стери-ческого препятствия, которое создают две трет-бутильные группы в о-положении. Первый фенол реагирует с тетралилперокси-радикалом с 1пн= 1Л Ю л/(моль-с) при 50°С, в то время как второй —на порядок медленнее —с йтн=1,3-10 л/(моль-с) [35]. [c.103]

    Лин Шин-лин и Амундсон приводят пример численного решения этой задачи при следующих исходных данных массовая скорость 0 = 2930 кг1 м -ч)-, линейная скорость и= 12,47 м1мин радиус зерна катализатора г — 4,24 мм порозность слоя е = 0,35 полное давление р — ат-, удельная теплоемкость зерна катализатора с, = 0,196 ккал кг-град)-, плотность газа рг=1,12 кг/м -, теплота реакции (—АЯ) = 0,667-10 ккал1моль-, средний радиус пор зерна Гпор = 40А коэффициент теплообмена сквозь газовую прослойку г = 97,6 ккал м-ч-град)-, пористость зерна еч = 0,40 теплоемкость газа с,-= 0,25 ккал кг-град)-, плотность катализатора рч = 960 кг м -, масса одного моля газа Л1 = 48 кг моль-, высота единицы теплопередачи Яс =0,018 м-, коэффициент теплопередачи г = 9,88 моль мР--ч-ат)-, константа скорости реакции к = = 22,5 ехр (—12200/Гч) моль м -ч-ат) поверхность зерна катализатора, приходящаяся на 1 объема, а = 402 м м -, б = ехр [12.98 —(12 200/г чЯ 1ч—температура частицы катализатора, °С т — время, мин. [c.268]

    Модель процесса сульфирования сополимеров с предварительным набуханием в тионилхлориде и соответствующий моделирующий а.т1горитм (см. рис. 5.11, 5.12) использовались при решении обратной задачи для поиска эффективной константы скорости реакции сульфирования К, и эффективного коэффициента массопроводимости О. Время прямого счета по уравнениям модели составило 4 мин время поиска коэффициентов К ш О по минимуму отклопений расчетных и экспериментальных значений конверсии (алгоритм поиска с применением чисел Фибоначчи) составило 30 мин. Найденные значения коэффициентов я О использовались затем для расчета конверсии сульфирования при различных условиях проведения процесса. Результаты расчета приведены на рис. 5.33. [c.365]

    По значениям констант скоростей реакции при двух температурах определите энергию активации, константу скорости при темпера-т у[)е Т з. температурный коэффициент скорости и количество вещества, из]>асхо ,ованное за время если начальные концентрации равны Сд. Учтите, что порядок реакции и молекулярность совпадают. [c.366]

    При ограничении на минимальное время полуцикла с ростом адиабатического разогрева реакционной смеси происходит сближение всех схем по времени контакта, необходимому для достижения заданной степени превращения. С увеличением энергии активации, как уже отмечалось, возрастают максимальная температура и время контакта. Увеличение времени контакта обусловлено большей продолжительностью формирования тешювой волны на предварительно нагретом слое катализатора. Это приводит к тому, что сближение характеристик схем по времени контакта происходит при большем значении адиабатического разофева. Аналогично будет действовать снижение минимально допустимого времени полуцикла и константы скорости реакции. Величины времени контакта для различных схем сближаются друг с другом при больших значениях величин адиабатического разофева. [c.331]


Смотреть страницы где упоминается термин Константы скорости реакции время: [c.262]    [c.240]    [c.32]    [c.98]    [c.22]    [c.328]    [c.143]    [c.364]    [c.138]    [c.310]    [c.36]    [c.229]    [c.309]    [c.339]    [c.141]    [c.296]    [c.101]    [c.365]   
Технология азотной кислоты 1949 (1949) -- [ c.3 , c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Время реакции

Константа скорости

Константа скорости реакции

Реакция константа



© 2025 chem21.info Реклама на сайте