Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматичность и спектры ЯМР

    Поэтому значения, представленные в табл. 42 и 43, соответствуют структурно-групповым параметрам асфальтенов, имеющих предельно возможную степень ароматичности. Прямое нахождение распределения углерода по структурным элементам дает более низкое значение ароматического углерода (табл. 44), чем при расчете ПМР-спектров. [c.165]

    Предложены различные критерии ароматичности [139—141] энергия делокализации или энергия резонанса энергия резонанса, отнесенная к числу я-электронов [142] энергия резонанса, рассчитанная методом молекулярных орбиталей в самосогласованном поле (ССП МО) [143] длина углерод-углеродной связи [144] делокализация электронов в виде анизотропии диамагнетизма (кольцевых токов в спектрах ПМР) [145]. [c.236]


    Термический анализ смол и асфальтенов показал, что после 310—320°С деструкция смол и асфальтенов протекает идентично [233, 234]. Однако значения тепловых эффектов и выход летучих веществ при пиролизе смол значительно выше, чем у асфальтенов, так как последние обладают большей ароматичностью. Масс-спектры смол и асфальтенов качественно почти не отличаются [234], хотя возрастание полного ионного тока для смол имеет более выраженный характер, а его начало смещено в область меньших температур. [c.267]

    Такое явление, ири котором некоторые кольца в конденсированных системах отдают часть своей ароматичности соседним кольцам, называется аннелированием об этом явлении можно судить по реакционной способности соединения, а также по его УФ-спектрам [47]. [c.68]

    Предлагаются две ускоренные спектрофотометрические методики анализа для определения содержания углерода в ароматических, парафиновых и нафтеновых структурах нефтяных остатков по ИК — спектрам поглощения и для оценки их степени ароматичности. [c.28]

    Фракции асфальтенов, извлеченные нормальными углеводородами, существенно отличаются от фракций, извлеченных диок-саном. Во фракциях первой группы последовательно увеличивается молекулярная масса, содержание кислорода, фактор ароматичности. В диоксановых фракциях смол содержание кислорода велико (до 9,2 %), ИК-спектры свидетельствуют о значительном содержании сложноэфирных связей. Имеется часть нерастворимых асфальтенов, принимающих участие в образовании осадков, концентрирующихся н дне резервуаров. В асфальтенах нет алифатических цепей из групп СНа, поскольку отсутствует поглощение в области 720—725 см . В высокомолекулярных асфальтенах высока интенсивность поглощения при 880 см -, которая обусловлена конденсированными ароматическими структурами. Интенсивность этой полосы выше интенсивности полос около 750 и 820 см , обусловленных колебаниями ароматических С—Н-связей в плоскости молекулы и перпендикулярно к ней. В низкомолекулярных асфальтенах интенсивность полосы при 880 см 1 меньше, чем при 750 и 800 см . Таким образом, с увеличением молекулярной массы фракций наблюдается увеличение размеров ароматических полициклических структур в асфальтенах. [c.78]

    Для определения качества сырья для коксования целесообразно использовать степень ароматичности и коэффициент коксообразующей способности (КРС), Последний рассчитывается по электронным спектрам поглощения и характеризует качество сырья с точки зрения склонности ароматических структур к циклоконденсации и выходу кокса. [c.9]

    Арилполисульфиды. Соединения, содержащие ароматические хромофоры и полисульфидную цепочку, состоящую из трех и более атомов серы, под воздействием свободных Зр-электронов атомов серы, окончательно теряют признаки ароматичности. Спектры становятся широкими и сплошными, со слабовыраженными инфлексиями, и отличаются от диалкилполисульфидов только большей интенсивностью поглощения. Увеличение числа атомов серы в полисульфидной цепочке батохромно смещает спектр поглощения. [c.196]


    Оказывается, кольцевой ток такого направления и силы возникает только в молекулах ароматических соединений поэтому его наличие, на которое указывают необычные значения химических сдвигов, является самым распространенным экспериментальным критерием ароматичности. Спектры ЯМР бензола (ароматического углеводорода), фурана (ароматического гетероциклического соединения) и циклооктатетраена (неароматического анну-лена) иллюстрируют это явление (рис. 15-6). [c.583]

    Некоторые структурные параметры, особенно среднюю ароматичность, удобнее определять по спектрам ЯМР С, так как последние непосредственно отражают особенности углеродного скелета. Этот способ молекулярной спектроскопии, чрезвычайно информативный при анализе индивидуальных соединений или очень-узких фракций, в нефтяном анализе использовался, как это ни парадоксально, при изучении лишь самых сложных смесец ГАС нефтяных остатков, битумов, асфальтенов [69, 241, 242 и др.]. [c.31]

    В нефтяном анализе спектроскопия ЭПР до сих пор использовалась главным образом при изучении асфальтово-смолистых и металлсодержащих соединений. Данные ЭПР указывают на присутствие в нефтях стабильных радикалов в концентрациях Ю — 10 г-1, растущих симбатно общей ароматичности нефтяного концентрата [12, 247—250]. В ЭПР спектрах ВМС нефти обычно обнаруживаются два типа поглощения синглетная полоса с ё -фак-тором 2,0025, близким к -фактору неспаренного электрона <2,0032), и мультикомпонентная сверхтонкая структура (СТС) резонансного поглощения с -фактором 2,0183, соответствующая ионам У+ в составе ванадилпорфириновых комплексов.Обнаружены также сигналы с -фактором 1,9995, указывающие на присутствие парамагнитных ядер Со и Си [247, 251, 252]. Сходство СТС асфальтенов и синтетического этиопорфиринового ванадильного комплекса послужило основой для ряда способов определения концентрации ванадия в нефти методом ЭПР [251, 253 и др.]. [c.32]

    Ясно, что величина отдельных ароматических ядер в 3—4 бензольных цикла является лишь средней и этот факт вовсе не исключает возможности присутствия в молекулах ВМС некоторых количеств моно- и бициклоароматических фрагментов, а также более высококонденсированных ароматических систем, обусловливающих плавное снижение поглощения в электронных спектрах вплоть до 500—600 нм. В ЭПР спектрах асфальтенов и смол, как правило, наблюдается довольно интенсивный одиночный сигнал с g-фактором, равным 2,003, т. е. близким к -фактору свободного электрона (g = 2,0023) [221, 914, 1053—1060], а также набор линий СТС, соответствующих, ионам V+ в веществе. Концентрация парамагнитных центров (стабильных радикалов) в молекулах асфальтенов меняется, по ЭПР данным, от 10 до 10 г и растет симбатно ароматичности вещества. Эти экспериментальные факты также свидетельствуют о том, что в молекулах присутствуют достаточно развитые полисопряженные системы, по которым дело-кализованы электроны. [c.195]

    Впервые исследования рентгеноструктурных характеристик проведены Лабутом и Пфайфером [316], которые показали, что асфальтены сходны с аморфными веществами. Исследование структуры асфальтенов рентгеноструктурным анализом проводилось различными авторами, начиная с 50-х годов [317—319]. Советские исследования проводились на широко распространенных дифрактометрах ДРОН-1 или ДРОН-2 [318, 319] или УРС-60 ИМ, диапазон измерения в углах от 3 до 70° (точность 0,5 %). Для калибровки спектров по углам снимались рентгенограммы с эталонов. Сравнение с эталонами одного образца асфальтенов арланской нефти позволило установить, что асфальтены обладают слоисто-блочной надмолекулярной организацией, имеющей неорганизованную гексагональную структуру дальнего порядка, характерную для неграфитированного углерода. Однако строение фрагментов асфальтенов, составляющих отдельные слои, отличаются большим разнообразием и различной степенью ароматичности, поэтому для других образцов асфальтенов наблюдалась симметрия гексагональных сеток на отдельных слоях [320]. [c.154]

    Степень ароматичности может быть ориентировочно оценена исходя из результатов элементного анализа [348] по эмпирической формуле СпН 2п—г х ОуЫи- Значение г составляет от 61 до 151, при допущении, что каждое ароматическое кольцо дает вклад в величину 2 равный 6. Суммарное число бензольных циклов в этих молекулах не может превышать 10—25 на каждом монослое, эта величина 2—5 сконденсированных ареновых колец (многие исследования подтвердили эти значения). [349]. Определяют ароматичность [350, 351] по кривой радиального распределения атомов углерода. Предложен метод анализа спектров ЯМР С, на основа-. НИИ которого можно получать достоверные значения фактора ароматичности, количество ароматических и нафтеновых. циклов и их изменение по фракциям [352]. На основе данных ЯЛ 1Р С [353] было найдено, что ароматические ядра в асфальтенах западносибирских нефтей построены по типу фенов, и в меньшей степени — аценов. [c.167]

    Впервые при изучении нефти Бавлинского месторождения [120] была обнаружена линия спектра ЭПР с д-фактором около двух. В дальнейшем подобные сигналы были зафиксированы в других нефтях, мазутах, гудронах [121]. Ряд исследователей [122] наблюдали сигнал ЭПР, обусловленный неспаренными электронами с концентрацт- -ей 8 10 спин/г и который был связан с асфальтеновой фракцией. Установлено [123], что сигнал свободного радикала можно использовать при определении содержания асфальтенов в нефтях. Степень ароматичности смолисто-асфальтеновых веществ и количества свободных радикалов взаимосвязаны экспоненциальной зависимостью. Так, в ряду масла — смолы — асфальтены — карбоиды число ПМЦ возрастает с 210 до 1,5-10 ° спин/г и вместе с тем увеличивается их степень ароматичности [117, 124]. В то же время большинство исследователей считают, что основными компонентами нефти, содержащими свободные радикалы, являются асфальтены. На них приходится до 97% величины количества ПМЦ [117]. Смолы же дают лишь 1 -3% от величины общей массы свободных радикалов. [c.115]


    Ароматичность, правило Хюккеля. Электрофильные и нуклеофильные реакции. Электронодонорность и электроноакценторность заместителей. Индуктивный эффект и эффект сопряжения. Теория замещения, ориентанты I и И рода. Реакции электрофильного и нуклеофильного замещения, реакции присоединения. Переходные состояния. Согласованная и несогласованная ориентация. Спектры (ПМР, ИК и УФ) ароматических соединений. [c.250]

    В. я-Ц иклопентадиенильные соединен и я в настоящее время получены для многих металлов. При взаимодействии циклопентадиена с солями двухвалентного железа в присутствии аминов образуется ферроцен, строение которого длительное время не было установлено. Для металлоорганического соединения он необычно устойчив и проявляет свойства ароматичности не присоединяет малеинового ангидрида, ацетилируется по Фриделю — Крафтсу, легко сублимируется, вступает во многие реакции замещения. Вместе с тем это соединение диамагнитно, железо не проявляет в нем своих парамагнитных свойств. На основании химических исследований установлена полная равноценность всех углеродных атомов ферроцена, спектры ЯМР выявили однотипность всех протонов. Ферроцену пришлось приписать необычную сэндвичевую структуру л-комплекса [c.43]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]

    Отсюда следует, что наличие ароматичности в соединении можно установить по его ЯМР-спектру. Если сигналы от связанных с кольцом протонов сдвинуты в слабое поле по сравнению с сигналами от обычных олефиновых протонов, молекула диатропна и, значит, ароматична. Кроме того, если в соединении имеются протоны, расположенные над циклом или внутри него (такой пример будет рассмотрен в разд. 2.16), и такое соединение диатропно, сигналы этих протонов должны быть сдвинуты в сильное поле. Недостатком метода является [c.64]

    Молекулы типа 5 и 6 называют дегидробензолами бензинами) или в общем виде аринами, а рассматриваемый механизм известен как механизм с образованием дегидробензола (ариновый механизм). От частиц, обсуждавшихся в т. 1, гл. 5, дегидробензолы отличаются тем, что каждый атом углерода в них четырехвалентен, однако, подобно упомянутым частицам, они также очень реакционноспособны. До настоящего времени не удалось выделить ни сам дегидробензол, ни какой-либо другой арин при обычных условиях, но в аргонной матрице при 8 К был получен устойчивый дегидробензол и сняты его ИК-спектры. Кроме того, определены спектры промежуточно образующихся дегидробензолов [31] нногда эти соединения можно уловить, например, с помощью реакции Дильса — Альдера (см. реакцию 15-47). Следует отметить, что дополнительная пара электронов не нарушает ароматичности. Ароматический секстет продолжает функционировать как замкнутое кольцо, а два дополнительных электрона просто локализованы на я-орбитали, которая охватывает только два атома углерода. Дегидробензол не имеет формальной тройной связи, поскольку в резонансный гибрид дают вклад две канонические формы (А и Б). Упомяну- [c.12]

    Согласно спектроскопическим данным, 186 остается ароматичным, так как драматических изменений в его ЯМР-, УФ- или ИК-спектрах в сравнении с обычньпли ароматическими соединениями не наблюдается. В то же время его реакционная способность имеет мало общего со свойствами обьрг-ных производных бензола и напоминает скорее поведение 1,3-диенов. Так, например, бромирование 186 количественно дает продукт присоединения — [c.450]

    Аллингер установил (1962 , то соединения 1а—1д заметно не различаются по своим УФ-спектрам, и на основании этого и других фактов пришел к заключению, ч о особой ароматичности, ожидаемой для систем с (4п + 2) электронами, эти гетероцИКЛЫ не проявляют. [c.522]

    Все соединения, десорбируемые растворителями с малой 8ав> характеризуются наибольшим (относительно АС) содержанием АО (таб.л. 12). Основную часть АО фракций Сх — Сд удалось выделить элюентами с Едв = 0,2-ь0,3, а фракций С4 имилорской и верхнесалымской нефтей — элюентами с = 0,3—0,4. ИК-спектры фракций С1 — С4,. разделенных на оксиде алюминия, свидетельствуют об уменьшении ароматичности с увеличением Вав- [c.20]

    Рейтц (194, 195) на основании изучения раман-спектров фурана, тиофена и пиррола приплел к заключению, что по своему характеру молекула фурана диолефиновая Из сравнения раман-спектров сделан вывод, что степень ароматичности по изменению характеристической этиленовой связи уменьшается в ряду бензол, тиофен, пиррол, фуран. [c.25]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    Результаты исследований [195] позволили предложить структуру асфальтенов в виде упорядоченных агрегатов типа плоских листов радиусом 8,5—15А и толщиной 16—20А. Эти листы обладают повышенной полярностью и потому могут адсорбировать полярные вещества. Наличие алифатических хвостов стабилизируют эти агрегаты. Асфальтены образуют полимолекулярную систему. Степень ароматичности фракций асфальтенов мало меняется с изменением молекулярного веса, что наряду с данными рентгеноструктурного анализа позволило предположить наличие в молекуле асфальтена блока идентичности (молекулярного звена) [184]. На основе ЯМР спектров предложена возможная химическая структура мономерного эвена (Суд Н92 N2820)3. Структура мономерной группы, молекулярный вес который колеблется приблизительно между 400 и 700 [164], зависит от природы нефти. Кривая распределения молекулярных весов асфальтенов имеет заметный максимум между значениями 1000 и 2000. Молекулярный вес большей части асфальтенов не превышает величины в несколько тысяч. Химическая структура асфальтенов характеризуется в основном одновременным присутствием ароматических и нафтеновых циклов и короткими алифатическими цепями [c.46]

    Отно1яеннед(К) содержания серы в коксе (3 к сере в сырье (5 ) к = —с увеличением ароматичности сырья, например, в спектре остатков от пара нистых нефтей до остатков пиролизного происхождения, состоящих практически на 100 из ароматики с большей долей голоядерной ароматики, уменьшается от 2,5 до 0,5,. [c.82]

    Спектр ЯМР [18]-аннулена содержит две группы сигналов. Сигналы в области более слабого поля ( 95, 12Н) отвечают внешним протонам молекулы, тогда как сигналы в сильном поле (—36, 6Н) соответствуют внутренним протонам, т. е. протонам, подверженным экранирующему влиянию возбужденного магнитного поля. И здесь снова эффект кольцевого тока доказывает ароматичность соединения. [c.583]

    Кольцевой ток. Движение я-электронов по замкнутому контуру. Кольцевой ток генерирует магнитное поле, которое может влиять па резоианспую частоту электронов. Обычно кольцевой ток сдвигает сигналы протонов ароматических соединений (например, производных бензола) в область слабого ноля (на спектре влево) от того места, где они должны были бы находиться ири отсутствии кольцевого тока (рис. 15-5 и 15-5). Наличие кольцевого тока — признак ароматичности соединения. [c.586]

    Наиб, существенной особенностью сопряженных систем с делокализованными связями является их повьпп. термодинамич. устойчивость. В ароматич. системах теплоты образования значительно вьппе, чем значения, найденные с учетом аддитивности локальных параметров, а связи характеризуются полной выравненностью длин (см. Ароматичность). Количеств, мера повыш. термодинамич. устойчивости таких систем-энергия резонанса (сопряжения, делокализации). В сопряженных системах правилам аддитивности не подчиняются также параметры ИК спектров, величины дипольных моментов и поляризуемости, диамагнитной восприимчивости и др. в этих случаях при расчете разл. характеристик вводят поправочные члены экзальтации и т. п. [c.388]

    На основе спектров дифракции рентгеновских лучей определяется фактор ароматичности, представляющий собой величи- [c.52]


Смотреть страницы где упоминается термин Ароматичность и спектры ЯМР: [c.392]    [c.450]    [c.453]    [c.20]    [c.24]    [c.327]    [c.330]    [c.331]    [c.611]    [c.264]    [c.986]    [c.987]    [c.268]    [c.326]    [c.101]    [c.322]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.583 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматичность



© 2024 chem21.info Реклама на сайте