Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химический сдвиг значения

Таблица 15, Значения химических сдвигов протонов ненасыщенных и ароматических соединений Таблица 15, <a href="/info/156692">Значения химических сдвигов</a> <a href="/info/1623252">протонов ненасыщенных</a> и ароматических соединений

    Порядок значений резонансных частот очень велик (>10 Гц) по сравнению с разностью Av = vэт—vx, а частота генератора vo мало отличается от резонансной частоты (гэт), поэтому окончательно для химического сдвига, измеряемого в миллионных долях (м.д.), имеем  [c.19]

    Применение Н ЯМР-спектроскопии к анализу нефтяных фракций не получило столь широкого развития, как газо-жидкостной хроматографии или масс-сПектрометрии, что связано со спецификой метода. Так, в сложных смесях,— учитывая и без того небольшой интервал значений характеристических величин, в данном случае химических сдвигов (всего 20 м. д. для протонов из всех возможных классов органических соединений) — близкие по структуре соединения дают лишь уширение сигналов. Дальнейшее усложнение спектров происходит за счет спин-спинового взаимодействия Н-атомов. Применение ПМР-спектров для количественной оценки тех или иных групп обычно затруднено. Так, определить интенсивности сигналов протонов различных алифатических групп трудно в виду их перекрывания. Определение интегральных интен- [c.140]

    Анализ структуры спектров ЯМР, рассмотренный выше, касался в основном достаточно простых спектров первого порядка, но часто наблюдаются гораздо более сложные спектры не первого порядка, которые на первый взгляд кажутся непонятными. Это случается тогда, когда разность химических сдвигов двух типов ядер не отличается в несколько раз от значений константы спин-спинового взаимодействия, как бывает при наблюдении спектров первого порядка, для которых характерно неравенство [c.30]

    Как и в случае исследования химического сдвига, значение квадрупольного расщепления А определяется произведением двух параметров, один из. которых относится к ядру (Q), а другой — к внешнему воздействию (д). [c.200]

    Установлено, что карбонил железа, будучи весьма близок к ферроцену по величине квадрупольного расщепления, резко отличается по химическому сдвигу — значение я з(0)р для карбонила гораздо больше (см. рис. 15). [c.66]

    Превращение результатов, полученных относительно внешнего стандарта, в данные относительно внутреннего стандарта довольно не просто. Если величины химического сдвига при бесконечном разведении в ССЦ превратить в величины относительно 81(СНз)4, используя приведенные выше данные, то получатся не значения т. Эта операция превращает химические сдвиги в величины 8 относительно чистого 81(СНз)4. Различие в 8 для 81(СН,)4 в чистой жидкости и при бесконечном разведении в ССЦ составляет около 0,4 м. д. Чистая жидкость экранирована в большей степени. [c.434]


Таблица 5 - Значения химических сдвигов и потенциалов ионизации Таблица 5 - <a href="/info/156692">Значения химических сдвигов</a> и потенциалов ионизации
    Значения химических сдвигов для протонов различного [c.42]

    Структура пика поглощения и значения констант расщепления позволяют говорить об окружении данной группировки, о том, какие группы влияют на сверхтонкое расщепление этого пика. При анализе спектра ЯМР следует рассчитать. химический сдвиг каждой группы и согласно таблицам химически.х сдвигов определить, к каким соединениям илн группировкам можно отнести каждую из исследуемых групп ников. [c.265]

    На рнс. 94 представлен спектр ЯМР вещества СзНвО. Исследуемый спектр состоит из следующих грунн квинтет, синглет, дублет. Проектируя центр симметрии каждой группы на нижнюю шкалу делений, с погрешностью 0,1 м. д. определяем соответственно химические сдвиги центра квинтета (4 м. д.), синглета (1,6 м. д.) и дублета (1,2 м. д.). Согласно таблице химических сдвигов указанное значение химического сдвига для квинтета может соответствовать группам СН, для синглета — группам ОН и дтя дублета — группам СНз, СНг. [c.265]

    Вообще химические сдвиги для протонов занимают диапазон несколько более 10 м. д., а стандартная ошибка их измерения составляет 0,001 м. д. Значение измеряемого химического сдвига. зависит от внешних фак- [c.20]

    С увеличением порядкового номера элементов наблюдается тенденция увеличения интервалов значений химических сдвигов, т. е. магнитное поле на ядре, обусловленное взаимодействием приложенного поля с электронным окружением, может меняться для тяжелых ядер в более широких пределах, а у легких ядер изменение констант экранирования много меньше. [c.21]

    Существенный разброс значений химических сдвигов, наблюдаемый для одних и тех же структурных фрагментов молекул различных соединений, ограничивает возможности структурных исследований с применением корреляционных таблиц и диаграмм только решением некоторых простейших задач. В связи с этим практический интерес представляют расчетные оценки химических сдвигов, основывающиеся на различных теоретических концепциях. Квантово-механические методы расчетов, к сожалению, пока оказываются малоэффективными, и обычно используются чисто эмпирические подходы с привлечением разнообразных корреляционных соотношений и аддитивных схем расчета химических сдвигов. [c.32]

    Два ядра любой спиновой системы, дающие сигналы с разными значениями химических сдвигов, называют химически неэквивалентными при одинаковых химических сдвигах ядра называют химически эквивалентными (или изохронными). Случайное совпадение сигналов ЯМР иногда можно выявить, например, варьированием растворителя или других условий эксперимента. Истинная эквивалентность имеет место при молекулярной симметрии. В этом случае спиновую систему можно отнести к какой-то точечной группе симметрии и рассматривать, используя аппарат теории групп. [c.22]

    Значения некоторых геминаль-ных и вицинальных констант протонного спин-спинового взаимодействия приведены в табл. 1.7. Очевидно, что наряду с химическими сдвигами эти константы, т. е. величины расщеплений сигналов в спектрах ПМР, могут использоваться для идентификации соединений и вообще в структурно-аналитических целях. [c.27]

    Анализ спектров не первого порядка, если они не сводятся к первому, требует специального математического аппарата и моделей для расчетов положения и интенсивности линий, а также моделирующих и итерационных программ для использоваиия ЭВМ. Когда в спиновой системе много взаимодействующих ядер, учитывают свойства симметрии с целью факторизации гамильтониана и сведения задачи к решению нескольких более простых. Так или иначе, в результате проводимого анализа сложных спектров не первого порядка получают значения химических сдвигов и констант спин-спинового взаимодействия, а иногда и важную дополнительную информацию, например, относительные знаки констант. [c.31]

    В качестве примера можно привести корреляцию химического сдвига протонов с электроотрицательностью заместителей, позволяющую кроме оценки значений б по известной шкале электроотрицательностей проводить и обратную процедуру — по значениям O определять электроотрицательность заместителя, от которой зависит электронная плотность около протонов. Так, для фрагмента —СНХ—СН— при увеличении электроотрицательности атома X сигнал ближайшего протона смещается в сторону меньшей напряженности поля, т. е. химический сдвиг растет (а-эффект), а сигнал более удаленного протона — в сторону более сильного поля, т. е. химический сдвиг падает ( -эффект). Или, например, для протонов этильного радикала в соединениях СНз—СН2—X химические сдвиги могут быть представлены зави- симостью [c.32]


    Такого рода корреляционные соотношения могут служить не только для оценки значений химических сдвигов, но позволяют решать и обратную задачу — определять по экспериментальным значениям б нужные физико-химические характеристики. Найдена, например, следующая зависимость а-постоянных Гаммета от химического сдвига протонов в замещенных анилинах для [c.38]

    Успешно применяют спектроскопию ЯМР для изучения донор-но-акцепторных комплексов, причем химические сдвиги С, как оказалось, являются, например, более информативными, чем сдвиги Н в отношении механизма комплексообразования. Хотя в общем значения 8пс не коррелируют с зарядовыми плотностями, спектроскопия ЯМР широко используется для изучения электронной структуры органических и элементорганических соединений и, несомненно, позволяет получать важные данные. [c.38]

    На основании корреляционных соотношений типа (VII.2) с эмпирически найденными параметрами (к и другие) проводят и расчеты зарядов на атомах по измеренным химическим сдвигам Д св. Получаемые в рамках метода наименьших квадратов значения зарядов удовлетворительно согласуются с величинами, рассчитываемыми полуэмпирическими методами квантовой химии. [c.158]

    Таким образом, появление резонансных пиков при разных значениях индукции внешнего магнитного поля, когда развертка спектра проводится по полю при постоянной частоте, зависит прежде всего от -фактора. Поскольку это так и поскольку -фактор отражает характер спин-орбитального взаимодействия в системе, то в известном смысле чисто формально и условно этот параметр можно сравнивать с химическим сдвигом в спектрах ЯМР, хотя информативность "-фактора ниже. [c.58]

    Химические сдвиги уровней атомного остова позволяют различать атомы одного и того же элемента в разном окружении в молекуле или каком-то образце. Эти сдвиги невелики (не превышают нескольких электрон-вольт) и перекрывание линий разных элементов мало вероятно, учитывая, что для большинства из них наблюдается несколько линий. В то же время возможны, однако, случайные совпадения пиков химически неэквивалентных атомов одного элемента, так как интервал значений химических сдвигов не столь велик (- 10 эВ), даже имея в виду минимальную ширину линии (0,2 эВ). [c.141]

    Применение методов ФЭС для структурно-группового анализа основывается на том, что значения св электронов в функциональных группах и вообще в некоторых структурных фрагментах мало зависят от строения молекулы (образца) в целом. Иными словами, химический сдвиг А св определяется в основном ближайшим окружением данного атома А, т. е. достаточно характеристичен для функциональной группы (структурного фрагмента). В табл. VII. 1 такие данные приведены для некоторых групп. В структурном анализе важно также, что относительная интенсивность максимумов, соответствующих разным группам, пропорциональна их числу в данном соединении. [c.153]

    Возможны, однако, отступления даже от симбатности хода изменения значений д и Д св, так как существенное влияние на химический сдвиг оказывает величина АУ (VII.2), поэтому правильнее последовательно проводить корреляцию заряда с величиной Д св—Д . Разделение суммарного химического сдвига на вклады от эффективного заряда и от потенциала Маделунга имеет смысл прежде всего для ионных соединений. В молекулах сдвиги коррелируют с молекулярным электростатическим потенциалом, который в отличие от эффективного заряда является не условной, а измеряемой физической величиной. [c.158]

    В работах Тафта с сотр. [59, 60] приведены многочисленные данные о химических сдвигах различных мета- и пара-производных фторбензола, из которых рассчитаны значения Ои д и Орез-Вероятно, для того чтобы не вводить а-константы для каждого растворителя в отдельности, Тафт объединил и усреднил полученные им из химических сдвигов значения Оинд для трех типов растворителей инертных, слабоэлектрофильных — в основном гидроксилсодержащих и слабых органических кислот — и сильноэлектрофиль-ных — трифторуксусной кислоты. Эти данные для 50 заместителей можно найти в работе [59] и монографии Пальма [1]. Нас же интересуют не усредненные значения, а данные о химических сдвигах и а-константах, характерные для каждого растворителя в отдельности, поскольку лишь при сравнении значений б , измеренных в инертных и сольватирующих растворителях можно убедиться, насколько существенное влияние оказывает среда на электронодонорные или электроноакцепторные свойства заместителе й. Приведем несколько примеров, из которых наиболее отчетливо видно, как образование водородных связей или донорно-акцепторных комплексов между заместителем и молекулами растворителя влияет на б и, следовательно, на а-константы заместителей. [c.298]

    При качественной интерпретации соотношения между химическими сдвигами энергий связи электронов оболочки и распределением заряда в молекулах возникло много фальсификаций. В гл. 3 упоминалось, что с помошью метода молекулярных орбиталей можно рассчитать формальный заряд (8) на атоме в молекуле. Напомним, что формальный заряд определяется как электронная плотность на атоме в молекуле минус электронная плотность на свободном атоме. Из рис. 16.15 следует, что можно коррелировать формальный заряд на атоме азота в молекуле (полученный с помощью итерационных расчетов по расширенному методу Хюккеля) с наблюдаемыми энергиями связи 1. -электронов азота для ряда азотсодержащих соединений. Отметим, что для корреляции со сдвигом в энергиях фотоионизационных переходов электронов оболочки используют заряд основного состояния атома, который определяют произвольным образом. Наблюдаемый успех либо случаен, либо обусловлен тем, что члены, такие, как энергии электронной релаксации, сохраняют постоянное значение. [c.347]

    Если предположить, что число молекул НА и НВ равно, а общее время жизии протонов т в этих двух состояниях одно и то же т1г, = тнв = 2т, то форма линии завггсит главным образом от значения тДуо, где Дуо — расстояние между линиями в отсутствие обмена, Гц. Для различных скоростей обмена выведены соответствующие уравнения, связывающие времена жизии с величиной химического сдвига между сигналами обменивающихся групп н шириной линии. [c.270]

    При анализе взаимосвязи химических сдвигов со структурой и пространственным строением молекул широко применяется также метод аналогий и модельных соединений, которые выбираются так, чтобы они имели структуру или фрагменты, близкие к возмо.жным в рассматриваемом соединении, и химические сдвиги для них были бы известны. Например, химический сдвиг при данном валентном состоянии атома варьируется, как было видно, в очень широких пределах в зависимости от заместителей. Объяснить и тем более рассчитать химический сдвиг для каждого конкретного соединения — задача чрезвычайной сложности. Однако если известны химические сдвиги для нескольких родственных соединений ряда, например РХз, РХгУ, РХУг, РУз и т. п., то можно предсказать химический сдвиг для неизученного соединения путем простой интерполяции или экстраполяции. На рис. 11.1 иллюстрируется, как в ряду фосфинов с заместителями —Н, —Р 2 и На предсказывается химический сдвиг для соединений РН(Рр2)г и Р(Рр2)2(51Нз). По таким предсказываемым значениям химических сдвигов можно затем идентифицировать еще не изученные соединения. [c.33]

    Большую роль спектроскопия ЯМР сыграла в развитии теоретических концепций органической химии, касающихся, в частности, строения и стереохимии интермедиатов и механизмов химических реакций. Получены структурные данные о таких интермедиатах многих практически важных химических реакций, какими являются карбкатионы и карбанионы. Например, в случае изо-пропильного катиона значения химических сдвигов 8.ц и 8. ,с показывают значительное дезэкранирование магнитных ядер, особенно углерода, а значение константы спин-спинового взаимодействия /13С1Н свидетельствует о практически плоской структуре центральной части катиона (т. е., что гибридизация центрального атома углерода близка к зр ). Исследуют как классические кар-бониевые ионы, так и неклассические а-мостиковые карбкатионы, [c.38]

    Рассчитанные по формуле (VII.2) значения химических сдвигов могут сильно отличаться (до десятков электрон-вольт) от наблюдаемых экспериментально. Существенное улучшение сходимости дает учет изменения энергии релаксации, т. е. дополнение уравнения (VII.2) членом АЕрел. [c.157]

    Второй подход использует теорему Купменса, утверждающую примерное равенство орбитальной энергии и энергии связи Есв электрона. Сравнение экспериментальных данных ФЭС по химическим сдвигам с полученными в результате квантово-механических расчетов орбитальными энергиями позволяет более обоснованно интерпретировать спектр, т. е. проводить отнесение пиков, а также оценивать делаемые в расчетах допущения. В то же время рассчитанные значения энергии обычно плохо согласуются с большими абсолютными значениями Есв- Можно лишь надеяться, что относительные значения, т. е. разности рассчитанных энергий, правильно отражают различия энергий связи, т. е. химические сдвиги АЕа для изучаемых объектов. Полуэмпирические методы квантовой химии даже для молекул, образованных атомами элементов первого ряда, не только не дают количественного соответствия рассчитанных энергий МО и энергий связи электронов, но иногда приводят к неправильному порядку относительного расположения уровней энергии. [c.157]

    Химические сдвиги однотипных групп в различных соединениях не одинаковы (например, группы СНз в метиловом спирте, хлористом метиле и уксусной кислоте), поэтому значения б варьируются в определенном интервале. Это затрудняет их строгое отнесение. При отнесении сигналов в спектре ПМР к той или иной группе следует учитывать интенсивность сигнала, которая пропорциональна числу магнитноэквивалентных протонов. Так, например, соотношение интенсивностей сигналов протонов в спектре этилового спирта равно 3 2 1, что позволяет однозначно отнести их к соответствующим группировкам. Интенсивность сигнала на диаграммной ленте можно определить по площади соответствующего сигнала. [c.286]


Смотреть страницы где упоминается термин Химический сдвиг значения: [c.403]    [c.7]    [c.193]    [c.220]    [c.98]    [c.269]    [c.224]    [c.12]    [c.20]    [c.20]    [c.35]    [c.119]    [c.158]    [c.159]    [c.286]    [c.288]    [c.289]    [c.290]   
Применение ямр в органической химии (1966) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Сводные данные значений химических сдвигов протонов органических пероксидов

Сдвиг химический стандартные значения

Химические сдвиги протонов метальных, метиленовых и метиновых групп в значениях т или 5 внутренний эталон

Химический сдвиг



© 2025 chem21.info Реклама на сайте