Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связи углерод-углеродные, длина

    Факты соответствуют этим представлениям о шести эквивалентных связях углерод-углеродные связи бензола равны и имеют длину 1,39 А (13,9 10 нм), т. е. промежуточную между длинами простой и двойной связей. [c.309]

    Одним из свойств простой углерод-углеродной связи является возможность относительно свободного вращения вокруг этой связи. Нетрудно представить себе, что, например, верхняя левая метильная группа в молекуле пропана, схематически изображенной на рис. 24.4, вращается относительно остальной структуры. Движения такого типа осуществляются в алканах при комнатной температуре с очень большой скоростью. В результате алканы с длинными цепочками постоянно совершают внутренние движения, приводящие к изменению их формы нечто подобное происходит с металлической цепочкой при встряхивании. [c.413]


    Рентгеновские лучи обычно имеют длину волны от 1 до 10 А. Вычислите энергию фотонов с длиной волны 2 А, выразив ее в джоулях на фотон. Выразите ее в килоджоулях на моль и сравните с энергией простой углерод-углеродной связи, равной 347 кДж моль. Могут ли рентгеновские лучи вызывать химические реакции  [c.381]

    Обе резонансные структуры показывают, что кольцо должно быть образовано чередующимися простыми и двойными связями. Однако структурные исследования обнаруживают, что все углерод-углеродные связи имеют одинаковую длину, как и следует ожидать для резонансного гибрида двух структур. Полную симметрию молекулы бензола можно изобразить при помощи одной структуры со специальным пунктирным обозначением  [c.478]

    В соединениях с более высокой степенью непредельности (при наличии сопряженных кратных связей) длина связей, находящихся между двумя кратными связями и изображаемых в формулах в виде простых связей, меньше, чем сумма ковалентных радиусов углеродных атомов, имеющих простую связь (табл. 20). Точно так же длина связи, находящейся между кратной связью и бензольным ядром йли между двумя непосредственно связанными друг с другом бензольными ядрами, меньше, чем обычная простая связь. Значительно уменьшена по сравнению с простой связью углерод-углеродная связь, Находящаяся между двумя тройными связями (табл. 20) [38]. [c.109]

    Полимерные цепи состоят из звеньев, которые благодаря наличию между ними простых углерод-углеродных или других химических связей способны к внутримолекулярному вращению, что приводит к набору различных конформаций. Важнейшим физическим свойством длинных цепных макромолекул является их гибкость, благодаря которой проявляется высокая эластичность полимеров. [c.34]

    В молекулах алканов длина, строение цепи и местоположение разрываемой связи оказывают влияние на энергию разрыва углерод — углеродной связи качественно аналогично влиянию их на прочность С —Н —связи. Так, связь между крайними углеродными атомами ослабляется по мере увеличения числа углеродных атомов (от 360 для этана до 335 кДж/моль для пентана и выше), а связь между внутренними углеродными атомами — по мере приближения к середине цепи (до 310 кДж/моль). Например, энергия разрыва связи С —С в молекуле н —октана в зависимости от ее местоположения изменяется следующим образом 335 322 314 310 314 322 335 кДж/ моль. [c.14]


    В случае конденсированных или бициклических структур по пространственным причинам часто не все теоретически предсказываемые изомеры могут быть реализованы. Так, бицикло-[2,2,2]-октан (гл. 29) в принципе мог бы существовать в двух формах, изображенных ниже. Однако только г ис-форма совместима с требованиями углерод-углеродных длин связей и валентных углов. [c.145]

    Вычислите энергию фотонов, соответствующих радиоволнам на частоте 1000 килогерц (1 кГц = 10 Гц), выразив ее в джоулях на фотон и килоджоулях на моль. Какова длина волны таких фотонов Как соотносится их энергия с энергией простой углерод-углеродной связи Могут ли радиоволны вызывать химические реакции  [c.381]

    Шесть валентных электронов в бензоле, не использованных для образования а-связей, попарно занимают три связывающие я-орбитали, энергетические уровни которых показаны на рис. 13-26. Но ни одна из этих связывающих электронных пар не принадлежит какой-либо определенной паре атомов С, следовательно, все шесть указанных электронов делокализованы по всей молекуле. Таким образом, каждая углерод-углеродная связь в молекуле бензола состоит из одной полной а-связи и половины я-связи (так как на шесть атомов С приходится три я-связи). Наблюдаемое значение длины связи С—С, равное 1,390 А, является промежуточным между характерными длинами простой и двойной углерод-углеродных связей. [c.575]

    Метильные группы — СНз с их более прочными внутренними связями оказывают стабилизирующее действие на молекулу и уменьшают ее реакционную способность. Поэтому, например, присоединение молекул (и радикалов) кислорода происходит в наибольшем удалении от метильных групп. Опыт показал [290], что скорость окисления парафиновых углеводородов с длинными цепями нормального строения больше, чем парафиновых углеводородов разветвленного строения с таким же числом углеродных атомов. Прочность одинаковых форм связей углерода с углеродом меньше, чем углерода с водородом. [c.38]

    Наименьшее число валентных электронов у атома, необходимое для создания цепи, равно двум. Атом углерода обладает четырьмя электронами и поэтому цепи из его атомов могут стать элементом плоской, или трехмерной, конструкции практически неограниченных размеров. Углерод образует также кратные — двойные и тройные — связи цепи углеродных атомов часто замыкаются в циклы, способные, в свою очередь, вступать в реакции конденсации друг с другом или присоединять длинные боковые цепи. Во многих случаях п-связи в углеродсодержащих молекулах объединяются в [c.160]

    Если принять структуру бензола как чередование ординарных и двойных связей, то ординарные связи должны соответствовать расстоянию между углеродными атомами 1,54 А, а двойные 1,32 А. В действительности же все шесть углерод — углеродных связей имеют одинаковую длину, равную 1,40 А, что соответствует полуторной связи и сообщает бензолу симметричную структуру и высокую термическую стабильность. Некоторые исследователи [240] сходятся на том, что двойная связь в бензоле непрерывно перемещается, что и обусловливает большую прочность молекулы при термической деструкции. [c.42]

    Кроме того, вследствие перекрывания р-орбиталей длина двойной углерод-углеродной связи (0,134 нм) меньше, чем длина ординарной (0,154 нм). [c.7]

    Окисление твердого парафина в СЖК. Из-за большой длины цепи в этом случае получаются очень сложные смеси продуктов. Атака молекулы углеводорода осуществляется с равной вероятностью по любому нз вторичных атомов углерода, и разрыв цепи происходит по любой углерод-углеродной связи. Образуются недо-окисленные продукты — кетоны с тем же числом атомов углерода и спирты разного строения, Прп окислении твердого парафина Сзо полученные кислоты на 60% состоят из ф,ракции Сю—С20, но образуются кислоты l—С4, а также кислоты С5—Сд и высшие (более 20 атомов С), Особенностью высших карбоновых кислот является их способность к окислению в оксикислоты и лактоны, кето-кнслоты н дикарбоновые кислоты. Примесь последних ухудшает качество целевых кислот, заставляя ограничивать степень конвер-си исходного парафина и температуру процесса. [c.382]

    Если полимер находится в стеклообразном или высокоэластическом состоянии, то он, очевидно, под действием силы тяжести может сохранять форму, и поэтому мы говорим, что полимер находится в твердом агрегатном состоянии. Если полимер находится в вязкотекучем состоянии, то под действием силы тяжести он не сохраняет форму (медленно растекается), что соответствует жидкому агрегатному состоянию. Газообразное состояние для полимеров неизвестно в силу большой длины макромолекул. Теплота испарения макромолекул, т. е. энергия межмолекулярного взаимодействия, настолько велика, что превышает энергию разрыва углерод-углеродных связей в основной цепи молекулы. Легче осуществить термодеструкцию полимера, чем превратить его в газ. [c.104]


    Предложены различные критерии ароматичности [139—141] энергия делокализации или энергия резонанса энергия резонанса, отнесенная к числу я-электронов [142] энергия резонанса, рассчитанная методом молекулярных орбиталей в самосогласованном поле (ССП МО) [143] длина углерод-углеродной связи [144] делокализация электронов в виде анизотропии диамагнетизма (кольцевых токов в спектрах ПМР) [145]. [c.236]

    Структура (С2Г)п имеет принципиально отличающуюся от (СГ)п модель строения [6-169]. Углеродные слои в этом соединении остаются плоскими. Атомы фтора внедряются в каждый второй слой углеродной матрицы [6-170]. На рис. 6-60,а показано взаимное расположение атомов фтора и углерода в (С2Г)п. Атомы фтора ковалентно связаны с атомами углерода в направлении, перпендикулярном углеродным плоскостям. Две трети атомов фтора имеют в ближайшем окружении 2 атома углерода и одна треть — 3 атома углерода, как и у (СГ) . Длина С—Г связи равна 0,138 нм а С—С связи — среднеарифметическому значению длин связей в графите и алмазе (0,147 нм). Атомы фтора образуют в упаковке (СгГ)п гребни. Последние входят во впадины последующего слоя (рис. 6-60, б). В результате обеспечивается плотный контакт между слоями. Такое упорядоченное состояние упаковки соответствует отдельным фрагментам кристалла, имеющим свой центр кристаллизации, которые в совокупности образуют мозаику. [c.391]

    Исследование радиального распределения электронной плотности углеродных атомов методом дифракции рентгеновских лучей [8-24] показывает, что пики на диаграммах соответствуют тригональным углерод-углеродным связям длиной 0,142 нм, отражающим существование гексагональных углеродных слоев, и тетраэдрическим связям длиной 0,155 нм. Есть некоторые основания считать, что длина последних связей определяется деформацией гексагональных плоскостей, изменяющей межатомные [c.489]

    Особый характер углерод-углеродной связи в циклопропане подтверждается тем, что в этом соединении длина связи С—С меньше, чем в предельных углеводородах, и составляет 0,1526 нм (в алканах 0,154 нм). [c.477]

    Напряжение, обусловленное отталкиванием диагональных атомов углерода, наблюдается только в циклобутане. Установлено, что длина углерод-углеродной связи в циклобутане несколько больше (0,157 нм), чем в предельных углеводородах (0,154 нм). На этом основании и было предположено, что несущие одноименные частичные отрицательные заряды диагональные атомы С-1 и С-3 и соответственно С-2 и С-4, находясь на небольшом расстоянии (0,220 нм) друг ог друга, должны испытывать взаимное отталкивание. [c.480]

    Полиприсоединение (разд. 24.3)-реакция, в которой алкены присоединяются друг к другу своими концами в результате разрыва двойной углерод-углеродной связи, образуя длинные цепи полимерных молекул. [c.436]

    Это соотношение автоматически учитывает различие в интегралах перекрывания для связей, образованных гетероатомами X и X. Оно используется также для расчета резонансных интегралов углерод-углеродных связей, длины которых отличаются от ароматической связи С- С (/=1,397 А). Так для формально простой связи = С—С= в бутадиене (/=1,46 А) К=0,9, а для двойной связи бутадиена (1,34 А) /(= 1,1. [c.233]

    Исключительное многообразие соединений углерода обусловлено некоторыми особенностями самих углеродных атомов. Важнейшей из них является способно<сть к образованию прочных связей друг с другом. Благодаря этому молекулы, содержащие в своем составе цепи углеродных атомов, при обычных условиях устойчивы, тогда как молекулы с цепеобразным накоплением атомов других элементов более или менее непрочны. После углерода наиболее длинные цепи из одинаковых атомов известны для серы. Однако содержащие [c.535]

    Первоначально в керогене имеются связи многих типов с разными энер-гиями разрыва. Это слабые связи, соответствующие физической или химической адсорбции (водородные связи и т. д.) карбонильные и карбоксильные связи эфирные и серные связи углерод-углеродные связи. Кроме того, энергия разрыва большинства типов связей зависит от влияния соседних функциональных или замещающих групп, длины цепей и т. д. Поэтому анализ распределения энергий активации Ец от О до 80 ккал/моль, вероятно, точнее отражает фактические механизмы, чем гипотетическое измерение энергии разрыва каждого отдельного типа связей. Следовательно, лучшим отражением состава керогена может быть гистограмма энергий активации, построенная на основе данных табл. 5 и показанная на рис. 23 для керогенов типов I, II и III. По мере увеличения глубины захоронения и температуры (и уменьшения 1/Т происходит постепенный разрыв разных связей приблизительно в порядке увеличения Е Об этом свидетельствует зависимость констант реакций Л/ от температуры показанная на рис. 24. [c.44]

    Исследование продуктов замещения моноциклических ароматических углеводородов методом, инфракрасной спектроскопии показывает, что преобладают соединения с заместителями в тгара-положении, а соединения с заместителями в л1ета-положении присутствуют в малом количестве. То обстоятельство, что альфа-углерод в боковой цепи не замещается, указывает на отсутствие алкилирования ароматики в процессах, протекающих в ретортах НТЮ. Увеличение молекулярного веса и соответствующее увеличение числа углеродных атомов боковой цепи больше связаны с увеличением длины боковых цепей, чем с увеличением их числа. [c.66]

    Связь между углеродом и фтором хотя и полярна, но мало поляризуема. Более того, по мере накопления атомов фтора в молекуле ее полярность уменьшается. Одновременно уменьшается длина связи С—F и увеличивается ее энергия [3—5]. Энергия связи С—F весьма велика (498 кДж/моль), и эта связь не рвется по гомолитическому механизму, не расщепляется кислородом при высокой температуре [6]. Единственным источником радикалов, инициирующих цепной деструктивный распад перфторнрованных углеводородов, является термический разрыв углерод-углеродной связи. [c.502]

    А. Кекуле выдвинул предположение, что эти дополнительные связи образуются между соседними атомами углерода в кольце (рис. 13-24). Если бы дело обстояло таким образом, длины углерод-углеродных связей вдоль бензольного кольца имели бы чередующиеся значения 1,54 А (характерное для простой связи С—С) и 1,35 А (как для двойной связи С=С в этилене). Однако рентгеноструктурный анализ показывает, что все шесть углерод-углеродных связей в молекуле бензола совершенно одинаковы. М. Дьюар предложил в связи с этим еще три структуры бензола с различными ком-, бинациями трех ковалентных связей, образуемых негибридизованными р-орбиталями атомов углерода (см. рис. 13-24). Каждая из этих структур сама по себе еще менее удовлетворительна, чем структура Кекуле. Невозможно изобразить одну структуру бензола, позволяющую правильно объяснить химическую связь в этой молекуле. Эта неудача теории проистекает из использовавшегося нами до сих пор представления, что всякая связь образуется непременно между двумя атомами молекулы без участия остальных атомов. [c.573]

    Аддитивные слагаемые — хг) — атомные дисперсии — приводятся на-)яду с атомными рефракциями (см. 1Х1Х) и могут быть использованы для заключения о структуре органических соединений подобно тому, как это было описано выше для молекулярной рефракции. При этом использование дисперсии дает по сравнению с определением показателя преломления только для одной длины волны дополнительные возможности. Установление степени непредельности (числа кратных углерод-углеродных связей и ароматических колец) по дисперсии не требует точного знания брутто-форму-лы, и для этой цели можно ограничиться приближенным значением мо- [c.202]

    В этой книге сделана еще одна уступка соображениям удобства. В системе СИ приставки для выражения более мелких дробных долей основных единиц, чем 10 используются лищь в тех случаях, когда показатель степени при 10 кратен трем, т.е. для 10 10 10 10 Однако типичные длины связей находятся в интервале Ы0 °-210 . Можно указывать, например, длину простой углерод-углеродной связи как 0,154 нанометра (нм), и именно так делается во многих учебниках. Однако представляется более удобным использовать с указанной целью единицу, более близкую к измеряемой величине, каковой является традиционная единица ангстрем (А), которая определяется как 10 ° м. Таким образом, длину простой углерод-углеродной связи можно выразить как 1,54 -10 м либо [c.445]

    В качестве основы выбирают самую длинную цепь, включающую двойную углерод-углеродную свячь. Положение двойной связи обозначают цифрой до названия (1-бутен) или после названия (бутен-1). [c.67]

    Величина dj, по данным рентгеноструктурного анализа, меньше, чем вычисляемая из размеров атомов или ионов внедренного металла. Это позволяет предположить их расположение в виде отдельных кластеров. Длина углерод-углеродной связи в базовой плоскости увеличивается от 0,142114 нм до 0,143204 нм. Этим донорные МСС отличаются от акцепторных, у которых длина С—С связи Дас с уменьшается (табл. 6-6). Из данных таблицы видно, что максимальные отклонения Аос-с наблюдаются у МСС I ступени К-углеродная матрица, а у углеродной матрицы-ГеС1з Дсс-с находится в близкой к линейной зависимости от 1/п, где п — ступень МСС. [c.267]

    Подведем краткий итог рассмотрению простейших представителен рядов алканов, алкенов и алкинов, содержащих, согласно классическим представлениям, ординарную, двойную и тройную углерод-углеродные СВЯЗИ. В методе локализованных МО этому соответствуют а -, а тс - и о Я -связи. В указанном ряду с ростом кратности связи растет общая прочность, укорачивается расстояние С—С. Вместе с тем благодаря наличию л-связей этилен и ацетилен отличаются от этана химической лабильностью. Одновременно меняется и С—Н-связь в этих соединениях, что можно связать с изменением характера гибридизации орбиталей атома углерода в этом ряду в этане, в этилене и лр в ацетилене) ее длина укорачивается, прочность повьипается, растет и способность к протонизации. Характеристики связей представлены в табл. 24. [c.211]

    В кристаллической решетке графита каждый атом углерода связан с тремя другими атомами тремя связями, лежащими в одной плоскости под углом 120°. Четвертая связь каждого атома направлена перпендикулярно плоскости трех других связей и соединяет между собой атомы разных плоскостей. Расположение атомов в каждой из плоскосте можно представит] как сплошное заполнение плоскости правильными шестиугольниками, в вершинах которых лежат углеродные атомы. Четвертая связь имеет большую длину, чем три остальных, и значительно слабее их. [c.95]

    Из рис. 14.4 видно, что на неспецифическом углеродном адсорбенте — широкопористом угле — происходит положительная адсорбция более высокомолекулярного спирта н-октадеканола н = = С18Нз70Н из растворов в низкомолекулярном спирте метаноле СНзОН. Приведенная на этом же рисунке зависимость теплоты смачивания того же адсорбента от концентрации раствора н-октанола в метаноле показывает, что молекулы спирта с более длинным углеводородным радикалом энергетически выгоднее располагаются на поверхности адсорбента по сравнению с молекулами метанола. В углеводородной части молекулы н-октадеканола концентрация силовых центров — атомов углерода и водорода — на единице площади поверхности, занимаемой этой молекулой, больше, чем концентрация силовых центров на площади, занимаемой восемнадцатью молекулами метанола. Это связано с тем, что валентные расстояния между восемнадцатью атомами углерода в длинной молекуле н-октадеканола намного меньше, чем вандерваальсовые расстояния между короткими молекулами метанола. [c.255]

    Ацетилен С2Н2 — первый представитель ряда алкинов С Н2 2-Молекула СдИз, согласно экспериментальным данным, линейна. Длина связи г(С = С)==1,212-10-> м, г (С—И) = 1,078 10- ° м. Резкому укорочению связи с—С по сравнению с этаном и этиленом отвечает возрастание энергии разрыва связи (С=С)=782 к Дж/моль. Согласно классическим представлениям, углерод-углеродная связь в ацетилене тройная. Водородные атомы в ацетилене способны к замещению на металл с образованием карбидов, например СаСз. Такая же способность к протонизации наблюдается у водорода при атоме С=К в других молекулах например в И—С =TSI. Это связано с накоплением высокого электронного заряда на тройной связи. [c.210]

    Итак, большая длина цепных макромолекул прчводит к появлению у них гибкости. Гибкость ограничена взаимо йствием атомов и атомных групп, связанных с основной цепью. )то взаимодействие ограничивает свободу вращения вокруг углерод-углеродных связей в макромолекуле. Чем больше взаимодействие, тем выше барьер вращения и тем меньше гибкость макромолекулы. Гибкость макромолекул проявляется в характерной для полимеров зависимости свойств от температуры и обусловливает существование трех физических состояний полимера и особенности его кристаллической структуры. Наличие двух основных элементов структуры — макромолекул и их сегментов — обусловливает особенности надмолекулярной структуры и, в частности, существование флуктуационной сетки. Все это вместе делает для полимера наиболее типичной не чисто упругую или чисто вязкую (необратимую) деформацию, а деформацию вязкоупругую. [c.105]

    Хотя методы валентных схем и молекулярных орбиталей дают несколько различаюш,иеся результаты, и тот и другой метод указывает на наличие делокализации в молекуле бензола. Например, оба метода предсказывают, что все шесть углерод-углеродных связей должны иметь равную длину, и это соответствует действительности. Поскольку каждый метод удобен для определенных целей, в дальнейшем будет использоваться или один, или другой метод как наиболее подходящий для данного случая. [c.50]


Смотреть страницы где упоминается термин Связи углерод-углеродные, длина: [c.98]    [c.126]    [c.128]    [c.149]    [c.239]    [c.226]    [c.350]    [c.78]    [c.93]    [c.285]    [c.285]    [c.549]   
Современные теоретические основы органической химии (1978) -- [ c.30 ]

Современные теоретические основы органической химии (1978) -- [ c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетиленовая тройная углерод-углеродная связь длина

Длина связи

Длина связи простой углерод-углеродной

Длины углерод-углеродных связей в беизоле

Связи углерод-углеродные

Углерод связи



© 2025 chem21.info Реклама на сайте