Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кольцевые токи

    Ароматические протоны производных бензола обычно дают сигналы в интервале 6,5—8,56, т. е. в более слабых полях, чем олефиновые протоны (влияние кольцевых токов см. разд. 3.3.1). Химические сдвиги протонов в орто- и параположениях определяются индукционным и мезомерным эффектами заместителя, а протонов в метаположениях — в основном индукционным эффектом (см. табл. 10 приложения). [c.130]


Рис. 26. Области экранирования и дезэкранирования протона в зависимости от его пространственного расположения по отношению к фениль-ному ядру. Числа означают вклады кольцевых токов в экранирование (м. д.). Рис. 26. Области экранирования и <a href="/info/318583">дезэкранирования протона</a> в зависимости от его <a href="/info/149743">пространственного расположения</a> по отношению к фениль-ному ядру. Числа означают вклады <a href="/info/131535">кольцевых токов</a> в экранирование (м. д.).
    Предложены различные критерии ароматичности [139—141] энергия делокализации или энергия резонанса энергия резонанса, отнесенная к числу я-электронов [142] энергия резонанса, рассчитанная методом молекулярных орбиталей в самосогласованном поле (ССП МО) [143] длина углерод-углеродной связи [144] делокализация электронов в виде анизотропии диамагнетизма (кольцевых токов в спектрах ПМР) [145]. [c.236]

    В области 0,8—2 м. д. происходит поглощение протонов метильных, метиленовых и метиновых групп, не находящихся по соседству с электроотрицательными заместителями, кратными связями и ароматическими ядрами. В эту же область обычно попадают сигналы протонов, непосредственно связанных с атомом фосфора. В еще более сильном поле находятся протоны сопряженных систем, лежащих в зоне экранирования кольцевыми токами (например, сигналы протонов ЫН-групп в порфирине). [c.148]

    Наличие членов Да н ог ара может приводить либо к уменьшению, либо к увеличению экранирования. К аналогичным изменениям (экранирование или дезэкранирование) может приводить наличие магнитных кольцевых токов в циклических системах. [c.294]

    ТО, ЧТО ОН неприменим к соединениям, в которых пе имеется протонов, относящихся к одной из упомянутых категорий, например к дианиону квадратной кислоты (разд. 2.19). К сожалению, не могут помочь здесь и спектры С-ЯМР, так как они не показывают кольцевые токи [42]. [c.65]

    Протонов в сильное поле, а от внутренних протонов — в слабое поле в противоположность диамагнитному кольцевому току, вызывающему смещения в противоположных направлениях. Соединения, способные удерживать парамагнитный кольцевой ток, называются парат рапными-, мы уже встречались с подобным поведением в некоторых четырех- и восьмиэлектронных системах. Как и в случае ароматичности, можно ожидать, что антиароматичность будет максимальна, если молекула плоская и имеет связи равной длины. [c.89]

    Значение химического сдвига, вызываемого кольцевым током, можно грубо оценить, если считать, что ток создает магнитное поле, эквивалентное полю магнитного диполя с моментом М=яа2] (где а — радиус кольца), находящегося в центре кольца. Если К — расстояние от центра кольца до ядра водорода молекулы, то напряженность магнитного поля, создаваемого кольцом в точке нахождения протона, [c.125]


    Хотя качественная картина кольцевых токов по-видимому, верна, количественный расчет Да для полициклических соединений не всегда дает удовлетворительное совпадение результатов с экспериментальными данными. [c.125]

    Отмеченные особенности нагревания различных классов кокса обусловлены своеобразным механизмом генерации тепла в засыпи кокса. Можно предположить, что в магнитном поле индуктора возникают как замкнутые кольцевые токи, протекающие по цепи, образованной примыкающими друг к другу частицами кокса, так и локальные токи с зоной действия, ограниченной отдельно взятым зерном кокса. При этом роль каждого из [c.9]

    Большие возможности для изучения строения и для анализа ароматических соединений открывает использование протономагнитного резонанса. В замкнутых перекрывающихся л-электрон-ных системах ароматических ядер магнитное поле индуцирует сильные диамагнитные токи. У ароматических протонов возникает эффект кольцевых токов и соответствующее разэкранирова-ние (сдвиг в более слабое поле). Ароматические протоны дают обычно сигнал в интервале 2,0—3,5 т, что существенно отличает их от протонов других групп (ацетиленовые 7,5т, олефиновые 3,6—5,4 т, алифатические и циклоалкановые 8,5—9,8 т) [59, с. 90—102]. [c.135]

    Рассмотрим экранирование протонов в молекуле бензола. Молекулярные орбитали л-электронов бензольного ядра представляют собой в первом приближении круговой сверхпроводник, по которому под действием внешнего магнитного поля процессируют подвижные электроны. Ток я-электронов течет в плоскости, параллельной плоскости ядра. Сила этого тока зависит от ориентации бензольного ядра относительно силовых линий приложенного магнитного поля наибольшим этот ток будет тогда, когда поле На пересекает плоскость ядра под прямым углом. В том месте, где находятся протоны молекулы бензола, индуцированное магнитное поле добавляется к внешнему полю, т. е. наблюдается парамагнитное экранирование, или дезэкранирование (деэкранирование, разэкрани-рование). В жидкости или в растворе ориентация возникает лишь на мгновение, поскольку тепловое движение непрерывно меняет угол, под которым магнитные силовые линии пересекают плоскость ядра. Однако направление л-электронного тока относительно плоскости бензольного ядра всегда одно и то же, поэтому магнитное поле, индуцированное этим током в месте нахождения протонов, не усредняется тепловым движением до нуля. В общем случае можно полагать, что кольцевой ток индуцируется той же составляющей поля Но, которая перпендикулярна плоскости ядра. [c.69]

    Кольцевой ток я-электронов является характерной особенностью не только бензольного ядра, но и других ароматических систем. Так, у аннуленов, имеющих плоское строение молекул (например, аннулена-18, рис. 25), наблюдается сильное экранирование внутренних протонов и сильное дезэкранирование внешних протонов. То же самое характерно для протонов ядра порфирина (рис. 25), В то же время спектр ПМР аннуле-на-14 содержит одиночный сигнал с химическим сдвигом, аналогичным химическому сдвигу олефиновых протонов, что свидетельствует о неароматичности системы вследствие неплоского строения молекулы. [c.70]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]


    Следует подчеркнуть, что необязательно существует параллель между старым и новым определением ароматичности. Если соединение диатропно и потому ароматично, в соответствии с новым определением оно более устойчиво, чем каноническая форма наинизшей энергии, но это ие означает, что оно будет устойчиво к действию воздуха, света или обычных реагентов, поскольку такая устойчивость определяется не энергией резонанса, а разностью свободных энергий между реальной молекулой и переходным состоянием соответствующей реакции эта разность может быть очень мала даже при большой энергии резонанса. Развита единая теория, связывающая кольцевые токи, энергии резонанса и ароматический характер [43]. [c.65]

    Как уже говорилось в разд. 2.14, системы, содержащие 4л электронов, должны быть не просто неароматическими, а действительно антиароматическими. Главным критерием антиароматичности аннуленов является наличие парамагнитного кольцевого тока [194], что вызывает смещение сигналов от внешних [c.88]

    Тот факт, что многие 4п-электронные системы оказываются паратропными, даже если они могут быть неплоскими и иметь связи неравной длины, указывает на то, что если добиться плоского состояния молекулы, то кольцевой ток может еще усилиться. Справедливость этого утверждения прекрасно иллюстрируется ЯМР-спектром дианиона 79 и его диэтильного и дипро-пильного гомологов [207]. Напомним, что в самом соединении 79 внешние протоны дают сигнал в области от 8,14 до 8,676, а метильные протоны — при —4,256. Однако в дианионе, который вынужден принять почти такую же плоскую геометрию, но имеет уже 16 электронов, сигнал от внешних протонов смещен почти до —36, а сигнал от метильных протонов находится около 216, т. е. смещен почти на 256. Мы уже наблюдали об-)атное смещение химических сдвигов, когда антиароматические 16]аннулены превращали в ароматические 18-электронные дианионы [183]. Во всех подобных случаях изменения в спектрах [c.90]

    Можно сделать вывод, что в системах, содержащих Ап электронов, антиароматичность будет максимальной, когда молекула вынуждена иметь плоскую геометрию (как в случаях соединения 57 или дианиона соединения 79), но при любой возможности планарность молекулы нарушается и межатомные расстояния становятся неравными, тем самым степень антиароматичности понижается. Иногда, например в случае циклооктатетраена, нарушение копланарности и альтернирование связей достаточно велики для того, чтобы полностью избежать антиароматичности. В других случаях, например в соединениях 86 или 91, видимо, невозможна такая геометрия молекул, которая позволяет полностью избежать р-орбитального перекрывания такие соединения обнаруживают парамагнитный кольцевой ток и другие признаки антиароматичности, хотя степень ее не так велика, как, скажем, в 57 или дианионе соединения 79. [c.91]

    Соединения, относящиеся к первой группе (известны [10]-, [14]-, [18]-, [22]-, [ 50]-аннулены), стабильны. Для них характерно сильное дезэкранирование внешних протонов в результате парамагнитных кольцевых токов, тогда как внутренние протоны, наоборот, сильно экранированы и находятся в спектре в области высоких полей. Именно такими свойствами обладают производные бензола и конденсированных ароматических углеводородов. 4п-Аннулены менее устойчивы и характеризуются прямо противоположными эффектами в спектрах ЯМР (известны [12]-, [16]-, [20]-, [24]-анну.пены). Хотя по пр<хггранственыым условиям только для [30]-аннулена достижима ненапряженная плоская конфигурация, уже для [18]-ан-нулеиа реализуется структура, близкая к плоской, что объясняется стремлением к ароматической стабилизации. [c.267]

    Большая магнитная анизотропия характерна для галогенов, тройной и двойной связи, карбонильной группы, ароматических колец. Важнейшим источником магнитной анизотропии являются кольцевые токи л-электронов, во щикающие под влиянием внешнего магнитного поля. При этом считают, что л-электронное облако бензола построено в виде двух колец, расположенных по обе стороны плоскости молекулы симметрич- [c.71]

    Таким образом, электронное экранирование не одинаково вдоль различных направлений в молекуле, т, е. анизотропно. Оно может приводить либо к экранированию, либо к дезэкранированию ядер, поэтому такие межатомные токи называются парамагнитными или диамагнитными. Диамагнитные токи уменьшают локальное поле, сдвигая сигналы протонов в область слабых полей, парамагнитные, наоборот, увеличивают его, сдвигая сигналы в область сильных полей. Так, сдвиг сигнала протонов ацетилена на 2,96 м.д. в более сильное поле по сравнению с сигналом этилена (6 = 5,84 м.д.) объясняется экранирующим влиянием парамагнитных токов тройной связи. В ароматических молекулах под действием поля возникают диамагнитные кольцевые токн, которые создают в направлении, перпендикулярном плоскости кольца, ослабляющее магнитное поле. В местах расположения ароматических протонов это поле усиливает основное, оказывая значительное дезэкранирующее влияние. Эффект кольцевых токов объясняет смещение сигнала протонов бензола (6 = 7,27 м.д.) на 1,43 м.д. в более слабое поле по срав-. нению с сигналом протонов этилена. [c.89]

    Предложенный механизм процесса объясняет результаты индукционного нагрева смеси, содер- жащей 40 % кокса класса <1 мм и 60 % угля марки Г. Даже при длительной выдержке (25— 30 мин) такая смесь не может быть нагре та >90 °С, так как отдельные зерна кокса изоли-рованы друг от друга слоем угля и индуцирова- ння кольцевых токов не происходит, а нагрев за счет локальных токов неэффективен. Смесь анало гичного состава, но с коксом класса 7—5 мм нагревается в электромагнитном поле до 1000 °С [c.9]

    В иоследнее время было показано [12], что повышенная диамагнитная восприимчивость представляет собой свойство, характерное только для ароматических соединений. Это свойство определяется как разность между экспериментально измеряемой молярной магнитной восириимчи-востью вещества и величиной, полученной путем оценки ири пренебрежении вкладом кольцевых токов. (Так, по результатам исследования магнитной восприимчивости 2- и 4-пироиы были отнесены к неароматическим соединениям [14].) [c.156]

    Такие особенности химических сдвигов можно принять за доказательство ароматичности. Это, одиако, не абсолютный критерий, так как для оценки химически.х сдвигов, ожидаемых в отсутствии кольцевого тока, необходимо использовать модельные соединенпя, а неудачный выбор моделей ыожег привести к ошибочным результатам /9]. [c.327]

    Рентгеноструктурный аналю показывает, что молекула является почтя плоской с максимальным отклонением атома углерода от плоскости 0,085 А [40 . Длигг . спяаей лежат в интервале 1,38—1,42 А и расположены в последовагельности короткая, короткая, длинная, но ие чередуются. ЯМР-спектр свидетельствует о наличии ароматического кольцевого тока (411. Химические свойства молекулы также подтверждают ее отнесейпе к ароматическому типу [42]. [c.332]


Смотреть страницы где упоминается термин Кольцевые токи: [c.131]    [c.126]    [c.18]    [c.83]    [c.68]    [c.294]    [c.64]    [c.77]    [c.87]    [c.92]    [c.5]    [c.124]    [c.125]    [c.72]    [c.156]    [c.327]    [c.330]    [c.330]    [c.331]    [c.331]    [c.342]   
Ядерный магнитный резонанс в органической химии (1974) -- [ c.7 ]

Теория молекулярных орбиталей в органической химии (1972) -- [ c.231 ]




ПОИСК





Смотрите так же термины и статьи:

Бензол кольцевого Тока эффект

Кольцевой ток

Кольцевые межатомные токи

Кольцевые токи в молекулах

Кольцевые токи в молекулах Комнлексы

Кольцевые токи модель

Кольцевые токи, влияние на химические сдвиги

Магнитная анизотропия атомов, атомных групп и связей Кольцевые электронные токи

Напряженность электрического поля при кольцевом токе

Спектроскопия кольцевого тока эффект

Циклопропаны кольцевого тока эффект

Энергия делокализации, ее локальная природа, ароматичность и кольцевые токи

Эффект кольцевого тока в циклических сопряженных я-системах



© 2025 chem21.info Реклама на сайте