Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллик

    Что же касается попыток приложения теории образования гелей как результата возникновения вокруг мицелл коллоидных частиц сольватных оболочек к объяснению процесса структурного застывания нефтяных продуктов, то такое приложение вряд ли является правомерным. В коллоидных растворах размер мицелл дисперсной фазы остается в какой-то мере соизмеримым с возможной толщиной сольватной оболочки или толщиной слоя адсорбированных на поверхности мицелл компонентов растворителя. В нефтяных же продуктах выделяющиеся кристаллики парафина, даже прп самом мелком их размере, остаются несоизмеримо более крупными по сравнению с возможными размерами сольватных оболочек, вследствие чего в последних не может иммобилизоваться такое количество жидкой фазы, чтобы вся масса раствора оказалась застывшей. [c.16]


    Изопропиловый спирт иногда зимой добавляют в бензин. Дело в том, что бензин всегда содержит небольшое количество воды. Обычно в этом нет ничего страшного. Но в морозы эта вода превращается в кристаллики льда—они могут закупорить бензопроводы, и машина остановится. Если же в бензобак добавлено немного изопропилового спирта, он смешивается с этими капельками воды и не дает им замерзать. Изопропиловый спирт входит также в состав антиобледенителей, очищающих 0 0 льда ветровые стекла автомобилей. [c.95]

    После короткого облучения пластинку или пленку обрабатывают раствором химикатов (проявляют) о тем, чтобы восстановить, соединения серебра в светочувствительном елое до металлического серебра. В тех местах пластинки, которые подверглись воздействию более яркого света, восстановление происходит быстрее, поскольку мельчайшие кристаллики металлического серебра, образовавшиеся при действии света, служат зародышами, на которые откладывается дополнительное количество серебра при проявлении. Если вовремя прекратить процесс проявления, то на стеклянной пластинке получится черно-белое изображение (черное — микрокристаллы серебра, белое — невосстановленные соединения серебра), обратное по платности исходному изображению (негатив). Невосстановленные соединения серебра удаляют обработкой в специальном растворе (фиксирование), поскольку они сохраняют свою светочувствительность. Проявленный и отх эиксированный негатив после сушки проецируют на поверхность плотной бумаги, как и пленка покрытой светочувствительным слоем на основе соединений серебра. Последующая обработка фотобумаги, совершенно аналогичная обработке пленки, позволяет получить реальное изображе- [c.117]

    Реально образующиеся кристаллы обычно не бывают идеальными , т. е. не образуют совершенно правильной кристаллической решетки. В них имеются мельчайшие трещинки, пустоты, которые заполняются маточным раствором. Кроме того, мельчайшие кристаллики могут слипаться, захватывая маточный раствор. Механический захват посторонних примесей происходит тем сильнее, чем быстрее идет кристаллизация, так как при быстрой кристаллизации ионы как бы не успевают образовать правильную кристаллическую решетку. [c.113]

    Размеры частиц парафина начинают заметно сказываться на его растворимости при величине кристалликов ниже 0,1—0,01 мм. Обычно же значения растворимости вещества даются для крупнокристаллического состояния. [c.82]

    Примерно в 1893 г. Муассан получил несколько мельчайших кристалликов черного цвета, которые он счел алмазами, и кристаллик хорошего алмаза длиной более 0,5 мм [c.142]

    Зависимость между молекулярным весом парафина и размерами образующихся кристаллов обусловливается в основном следующим. С повышением молекулярного веса уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает новообразование дополнительных кристаллических зародышей. Поэтому при кристаллизации высокомолекулярного высококипящего парафина выделяющаяся из раствора твердая фаза распределяется среди большого числа возникающих центров кристаллизации, вследствие чего размер образовавшихся кристалликов оказывается мелким. Детальный разбор и аналитическое обоснование описанного выше механизма влияния молекулярного веса парафина на размер образуемых им кристалликов был дан одним из авторов в работе [33]. [c.65]


    Однако подобные объяснения механизма структурного застывания в значительной доле составлены на основании умозрительных построений и не подтверждаются в должной степени прямым опытом. При более же глубоком анализе этих объяснений, а также при попытках проверить и подтвердить их экспериментально возникают несоответствия, не позволяющие эти объяснения принять и подтверждающие еще раз справедливость теории кристаллической сетки, сформулированной в ГрозНИИ А. Н. Са-хановым. В частности, исследования и наблюдения, проводившиеся авторами, показали, что структурное застывание нефтяных продуктов всегда сопряжено с образованием связанной кристаллической сетки парафина. При этом видимость отдельных кристалликов, составляющих сетку, оказывается различной наиболее видимыми являются кристаллики, лежащие на ребре по отношению к плоскости поля зрения менее видимыми остаются кристаллики, наклоненные к плоскости поля зрения и с трудом различимыми оказываются кристаллики, расположенные параллельно плоскости ноля зрения. При мелкой кристаллической структуре парафинов и при не вполне удачно подготовленном препарате и недостаточно благоприятных условиях наблюдения плоско расположенные и слабо наклоненные кристаллики могут оставаться невидимыми, что будет производить впечатление пре- [c.15]

    Здесь следует отметить, что появление в масле твердой фазы в виде кристалликов парафина, хотя еще и не связанных между собой, несколько повысит общую (структурную) вязкость такой смеси, что, разумеется, скажется и на температуре застывания в сторону повышения ее. Но тем не менее этот случай застывания будет относиться к форме вязкостного застывания, но не структурного. [c.16]

    Никаких мелкокристаллических игольчатых церезиновых структур, о которых упоминается в некоторых литературных источниках, авторами ни разу для данных фракций в указанных выше условиях ни для каких нефтей получено не было. Структуры с мелкими кристалликами, напоминающими по внешнему виду при рассмотрении в микроскопе штрихи или мнимые иголочки, наблюдались в этих фракциях только при загрязнении их более высококипящими фракциями вследствие нечеткой фракционировки при перегонке или при слишком высокой скорости охлаждения препаратов при микрофотографировании. [c.27]

    Следовательно, с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. При этом повышению температуры кипения соответствует весьма резкое уменьшение размера кристаллов. Для иллюстрации этого на рис. 8 приведена серия микрофотографий последовательных фракций одной из парафинистых нефтей, закристаллизованных в равных условиях. Из рис. 8 видно, что даже при относительно небольшом повышении температуры кипения фракции, например на 50° (от 400 —450° до 450—500°), уменьшаются линейные размеры кристалликов парафина более чем в 2 раза. [c.65]

    Выделение твердых углеводородов, находящихся в таком мелкокристаллическом состоянии, из остаточных продуктов при их депарафинизации было бы крайне затруднительным, если бы в этих продуктах не содержались также и некоторые активные вещества, природа которых остается пока малоизученной. Эти вещества оказывают влияние на общую кристаллическую структуру твердых углеводородов и способствуют соединению отдельных мелких кристалликов в относительно крупные и более или менее компактные агрегаты (наподобие коагуляции коллоидных систем). Соединение кристалликов в агрегаты значительно облегчает отделение мелкокристаллических углеводородов от жидких компонентов или их растворов и делает возможной депарафинизацию последних. [c.32]

    Характерная картина образования кристаллических агрегатов может наблюдаться при добавлении к раствору мелкокристаллического парафинистого продукта в углеводородном растворителе какого-нибудь осадителя, например кетона, дихлорэтана и др. При этом происходит следующее. При растворении продукта в бензоле или в бензине и последующем охлаждении образуется раствор, содержащий неагрегированные кристаллики парафина, относительно равномерно рассеянные по всей массе раствора при добавлении к раствору осадителя понижается растворимость находящихся в нем как твердых, так и жидких компонентов обрабатываемого продукта. Это приводит к выделению из раствора и адсорбции на поверхности кристалликов некоторого количества наиболее высокомолекулярных и малорастворимых жидких компонентов. Введение осадителя сопровождается, возможно, также и изменением электрического заряда частиц (кристаллов) парафина. В результате указанных явлений разрозненные кристаллики парафина начинают собираться сначала в хлопья, а затем в комки, т. е. происходит агрегация кристалликов, аналогичная коагуляции дисперсной фазы коллоидного раствора. На рис. 11 [c.74]

    Но иногда бывают случаи, когда кристаллики парафина, даже не связанные между собой и свободно плавающие в растворе, остаются длительное время во взвешенном состоянии и не оседают. Причиной аномальной устойчивости таких суспензий парафина является, по нашим наблюдениям, наличие у взвешенных частиц парафина значительных электростатических зарядов, которые препятствуют сближению частиц и их оседанию. [c.127]

    Другой причиной зависимости кристаллической структуры остаточных продуктов от природы исходной нефти является наличие в них активных веществ, вызывающих агрегацию кристалликов твердых углеводородов. Эти активные вещества относятся, но-видимому, к категории высокомолекулярных высококипящих соединений, поскольку при перегонке нефти они не переходят в дистиллят, а сосредоточиваются в остатке. В нефтях эти активные вещества могут содержаться в различных количествах, и их природа, а также и активность тоже могут быть различными, что и сказывается на кристаллической структуре твердых углеводородов, находящихся в остаточных продуктах различных нефтей. [c.33]


    Для выяснения указанных выше обстоятельств авторы провели многочисленные исследования в поляризационном микроскопе препаратов самых разнообразных нефтяных продуктов, создававших при первом рассмотрении впечатление игольчатой структуры. И во всех случаях без исключения при более тщательных наблюдениях (при усилении увеличения и освещения) все эти структуры неизменно оказывались пластинчатыми структурами. Авторы вели, в частности, наблюдение за такими структурами, производя медленное перемешивание препаратов при помощи стеклянного острия, чтобы наблюдаемые кристаллики меняли свое положение. При таком перемешивании было видно, как яркий игольчатый кристаллик, поворачиваясь, превращался во все менее и менее освещенную пластинку и наоборот. [c.62]

    Обессоливание нефти в лабораторных условиях производится следующим образом. Испытуемую нефть помещают в делительную воронку, добавляют горячей воды и тщательно перемешивают. При этом содержащиеся в нефти кристаллики солей переходят в водный раствор. Нефть отстаивается, и водный раствор отделяют. [c.189]

    Наличие у взвешенных в растворителе кристалликов парафина электростатических зарядов нами было установлено в опытах по выяснению возможности осаждения кристалликов путем воздействия электрическим нолем высокого напряжения. Для этого [c.75]

    Важным является также и действие добавки растворителей-осадителей на кристаллическую структуру выделяющегося парафина. Как было рассмотрено в предыдущей главе, добавка растворителя-осадителя к раствору, содержащему мелкокристаллический парафин, вызывает при соответствующих условиях собирание отдельных кристалликов в хлопья и агрегаты наподобие коагуляции коллоидных растворов. Если же кристаллизация идет в присутствии растворителя-осадителя, заранее введенного в раствор, то агрегаты могут образовываться уже при самом процессе кристаллизации. При объединении мелкокристаллических образований парафина в присутствии растворителя-осадителя в агрегаты становится возможным отделение твердой фазы от раствора фильтрацией или центрифугированием даже при переработке наиболее тяжелого нефтяного сырья. [c.98]

    Размер выделившихся из раствора кристаллов связан с их численностью. Чем больше образуется кристаллов парафина при данных условиях, тем мельче будет их размер, поскольку количество парафина, выделяющееся из раствора, будет распределяться среди большего числа отдельных кристалликов. Следовательно, для получения при кристаллизации крупнокристаллических образований необходимо создать такие условия, при которых данное количество выделяющегося парафина будет давать наименьшее число кристаллов. [c.108]

    Флотация. Нами было обнаружено, что кристаллики парафина смачиваются углеводородными растворителями не полностью., К этим растворителям относится также и масло фракций, в состав которых входит данный парафин. Вследствие неполноты смачивания кристаллики парафина стремятся выделиться на поверхность раздела масла и воздуха и плавают, несмотря на то, что плотность парафина в твердом состоянии выше, чем масла тех же пределов кипения, и тем более, чем растворов этого масла в легких углеводородных растворителях. [c.136]

    Размещение кристалликов парафина на поверхности масла легко обнаружить визуально после встряхивания и некоторого отстоя какого-либо парафинистого продукта, желательно крупнокристаллической структуры в стеклянном сосуде. После встряхивания и отстоя на поверхности продукта появляется слой плавающих и плотно прилегающих друг к другу кристалликов парафина. При последующем достаточно длительном хранении продукта эти кристаллики парафина, перекристаллизовываясь с течением времени, срастаются в сплошную прозрачную тонкую пленку, покрывающую поверхность продукта. [c.136]

    Неполнота смачивания кристалликов парафина маслом и стремление пх выделиться и удержаться на поверхности раздела масло — воздух позволяют использовать это явление для отделения парафина от масла, т. е. применить для отделения парафина метод флотации, который заключается в следующем. Охлажденный парафинистый продукт, содержащий взвесь кристаллов парафина, продувают мелкораспыленным воздухом. Прп продувке кристаллики парафина прилипают к пузырькам воздуха и вместе с ними всплывают на поверхность в виде пены, обогащенной парафином. Прп повторных продувках воздухом Д ожно полностью удалить пз обрабатываемого продукта всю находящуюся в нем взвесь парафина. [c.136]

    Из кристаллизаторов 6 охлажденный до конечной температуры процесса раствор сырья проходит фильтр 7 для удаления из него кристалликов льда и грязи и поступает в центрифуги I ступени 8. [c.204]

    Регенерация дихлорэтан-бензолового растворителя. Особенностью дихлорэтан-бензолового растворителя, имеющей значение при его регенерации из растворов продуктов депарафинизации, является способность составляющего его дихлорэтана взаимно растворяться с водой и образовывать азеотропную смесь. Для использования же при депарафинизации данный растворитель должен быть совершенно безводным, так как содержавшаяся в нем вода будет выкристаллизовываться при охлаждении и образующиеся кристаллики льда будут отлагаться в коммуникациях и, что особенно важно, забивать выводные сопла центрифуг, нарушая этим их нормальную работу. Поэтому в процессе регенерации дихлорэтан-бензолового растворителя важное место занимает его осушка и разделение образующейся в процессе регенерации азеотропной смеси дихлорэтана с водой. [c.236]

    Выпавшие кристаллы отфильтровывают на воронке Бюхнера. После извлечения кристаллов из воронки их отжимают между листами фильтровальной бумаги и высушивают на воздухе до тех пор, пока кристаллики кислоты не будут легко отставать от погруженной в них стеклянной палочки. В таком виде янтарная кислота считается очищенной и может применяться для установления титра раствора. [c.130]

    Ни топливо, ни масла не должны содержать воды. Наличие воды в топливе снижает его теплоту сгорания и увеличивает износ двигателя вследствие того, что содержащиеся в воде соли при испарении откладываются на стенках двигателя кроме того, при низких температурах попавшие в топливо капли воды, превращаясь в кристаллики льда, затрудняют фильтрацию и прокачиваемость топлива и могут привести к нарушению питания двигателя. Наличие льдинок (шуги) в нефтепродуктах затрудняет их перекачку по трубопроводам. [c.160]

    Если возникает сомнение в наличии воды, в ловушку опускают кристаллик перманганата калия при содержании даже следов воды нижний слой окрасится в фиолетовый цвет. [c.162]

    Поверхность раздела фаз. Процесс возникновения новой фазы, например при конденсации пара, замерзании жидкости или осаждении растворенного вещества из раствора, можно представить следующим образом. Сначала молекулы образуют небольшие скопления (кластеры), насчитывающие от 2 до 100 молекул, которые постепенно растут и превращаются в более или менее крупные капельки или кристаллики. Этот процесс за счет их роста или коалесценции продолжается до тех пор, пока они не становятся видимыми невооруженным глазом. Кластеры, именуемые в зависимости от размеров зародышами или ядрами, являются предшественниками образования новой фазы. [c.191]

    Осажденный парафин состоял из массы мелких иглоподобных кристалликов, скрепленных гроздьями веществом, которое как они сочли, было высокоароматической смолой, осажденной вместе с парафином. Игольчатые кристаллы плохо поддавались фильтрованию. [c.520]

    Кроме того, вследствие весьма мелкой кристаллической структуры твердых углеводородов этой категории, при которой размер их кристалликов приближается к размерам мицелл коллоидных растворов, приобретают большие значения величины относительной поверхности этих кристалликов, приходящихся на единицу их массы. Так, при размерах кристалликов 0,01 X 0,01 X X 0,0002 мм поверхность кристалликов на 1 г их массы составляет около 10 м . При такой величине относительной поверхности твердых углеводородов количество адсорбируемых ими из раствора при перекристаллизациях (а тем более при переоса-ждепиях) различных сопутствующих компонентов становится уже существенным, что еще более препятствует должной очистке остаточных твердых углеводородов и получению их в достаточно чистом виде. [c.52]

    Исследования показали, что эта двойственная роль находит себе достаточно определенное теоретическое объяснение в том, что смазочное действие проявляется всегда как на наружной поверхности металла, на границе металла с окружающей средой, так и внутри металла в его наружном слое. Активные полярные компоненты Схмаз-ки, т. е. высшие жирные кислоты, органические соединения, содержащие галогены и серу, способствуют резкому повышению возможности для масел проникать в металл. Дело в тОхМ, что в пластически деформированном поверхностном слое металла появляются микро-и ультрамикрощели между кристалликами и в отдельных кристалл [c.132]

    Во многих литературных источниках можно встретить разделение кристаллических образований твердых углеводородов нефти на крупнокристаллическую пластинчатую форму, свойственную парафинам, и мелкокристаллическую игольчатую форму, якобы присущую так называемым церезинам . Некоторые авторы, основываясь на этом разделении, даже определяют различные фракции нефтей как парафинистые или церезинистые и т. д. Однако такое разделение кристаллических форм твердых углеводородов нефти является следствием недоразумения. Игольчатой, церезиновой формы кристаллов твердых углеводородов нефти в действительности не существует. Впечатление игольчатой формы создается нри рассмотрении в поляризационном микроскопе мелких пластинчатых образований при недостаточно высоком увеличении и недостаточно сильном освещении. Возникающая в этих условиях иллюзия игольчатой формы кристаллов обусловливается тем, что плосколежащие кристаллики вследствие крайне малой толщины очень слабо поляризуют свет и могут остаться невидимыми в поле зрения микроскопа. Видимыми же оказываются только кристаллики, стоящие на ребре. Но нри таком положении эти кристаллики просматриваются или проектируются на фотопленку в форме штрихов, напоминающих мелкие иголочки, в результате чего и создается впечатление мнимой игольчатой структуры парафина. [c.62]

    В последующем отдельные исследователи возражали против описанного выше объяснения механизма структурного застывания нефтяных продуктов и делали попытки дать иное разъяснение этому явлению. Так, например, указывалось, что структурное застывание масел наступает в ряде случаев до того момента, когда кристаллы парафина образуют сплошную пространственную сетку. К. О. Рамайя [28] считает, что структура застывшего продукта обусловливается не кристаллической сеткой парафина, а образующимися в масле мицеллами высокоассоциированных масляных молекул , которые, по мнению Рамайя, и обусловливают образование гелеобразной структуры и застывание масла. Д. О. Гольдберг [29, не отрицая роль парафина в застывании нефтяных продуктов, объясняет явление самого застывания возникновением вокруг кристалликов (частичек) парафина сольватных оболочек, которые, по мнению Д. О. Гольдберг, достигают якобы таких размеров, что иммобилизуют всю массу масла. [c.15]

    Точка зрения, согласно которой структурное застывание нефтяных продуктов вызывается выделением кристалликов парафина с последующим соединенпем их в кристаллическую сетку, позволяет хорошо и исчерпывающе объяснить все происходящие при структурном застывании явления. Так, аномалия вязкости, возникающая при охлаждении нефтяного продукта незадолго до наступления структурного застывания, объясняется с этой точки зрения появлением дисперсной фазы в виде 1<ристалликов парафина (а в ряде случаев ультрамикроскопических кристаллических зародышей), еще не связанных между собой вследствие недостаточной их концентрации или присутствия мешающих соединению кристаллов веществ (смолистых, присадок-депрессаторов и т. д.), но уже способных вызывать аномалию вязкости. [c.16]

    I водородов весьма осложняет их очистку и освобождение от низко-4- застывающих компонентов и высоковязких веществ полицикли- ческого и смолистого характера путем перекристаллизации, поскольку образующееся кристаллики оказываются настолько мелкими, что крайне трудно поддаются отделению от маточного раствора как фильтрацией и центрифугированием, так и всеми другими обычно нрименяюнщмися для данной цели средствами. Поэтому исследователи, изучавшие остаточные углеводороды, заменяли действительную их перекристаллизацию повторными иереосаждениями. При переосаждении к растворителю добавляли компоненты, снижавшие растворимость не только твердых, но и некоторых жидких наиболее тяжелых, высокомолекулярных угле- [c.50]

    Различие в физических свойствах технического парафина и церезина обусловливается разницей размеров образующих их кристалликов и различным составом по температурам плавления. Относительно узкий состав технического парафина по температурам плавления, низкое содержание в нем масел, крупная кристаллическая структура составляюпщх его твердых углеводородов придают ему твердость и хрупкость (имеется в виду ниже температуры перехода). Пластичность же церезина обусловливается его / широким составом по температурам плавления и содержанием / существенных количеств высоковязких некристаллизующихся компонентов. [c.79]

    Рассмотрим агрегатную форму процесса кристаллизации парафинов. Явление агрегатной кристаллизации наблюдается в основном для высококипящих мелкокристаллических парафинистых нефтяных продуктов главным образом остаточного происхождения и заключается в следующем. Высококипящие высокомолекулярные парафины дают при кристаллизации весьма мелкую кристаллическую структуру. По величине образуюпщеся кристаллики парафина приближаются, особенно для многих тяжелых продуктов остаточного происхождения, к размерам мицелл коллоидных растворов. Поэтому продукты, содержащие взвесь из таких мельчайших кристалликов парафина, проявляют ряд свойств, присущих коллоидным системам, — нанример аномалию вязкости, дают явления, аналогичные гелеобразованию, и др. К числу таких свойств относится способность микрокристаллической взвеси собираться нри определенных условиях в скопления или агрегаты, как это происходит нри коагуляции коллоидных растворов. Одной из причин такой коагуляции (точнее агрегации) является выделение на поверхности кристалликов парафина вязких масляных компонентов, способствующих ч оединению отдельных кристалликов в агрегаты. Возможно, что в процессе агрегации кристаллов парафина существенную роль играют такж . и электростатические явления. [c.74]

    В хорошо просушенный раствор мелкокристаллических остаточных парафинов в маловязких растворителях (в бензоле, уайт-спирите, дихлорэтанебензоловой смеси и др.) вводили электроды, к которым подводили напряжение постоянного тока от 1 до 20 кв. При подаче на электроды такого напряжения кристаллики парафина, первоначально рассеянные по всему раствору, оседали на одном из электродов, и раствор полностью просветлялся. Опыты проводили с растворами очищенного и неочищенного остаточного петролатума, технического церезина, парафинистых цилиндровых дистиллятов и других парафинистых продуктов. Проведенные опыты показали наличие у взвешенных в растворителях кристал- [c.75]

    Изложенные выше положения о значении кристаллической структуры парафина при центрифугировании можно проиллюстрировать примером из производственной практики. В 1945 г. на одном из заводов, где остаточные масла депарафинируют центрифугированием в растворе смеси дихлорэтана с бензолом, возникла необходимость привлечь к переработке тяжелое дистиллятное сырье. Попытки непосредственно центрифугировать это сырье положительного результата не дали. При центрифугировании этого сырья кристаллы парафина отделялись от раствора плохо и неполностью, из-за чего депарафинированное масло имело повышенные температуры застывания снижение температуры обработки пе улучшало положения. Большое количество масла уходило в петролатум. Проведённые в связи с этим ГрозНИИ совместно с заводом исследования показали, что причиной плохой центрифугируемости данного сырья была не подходящая для этого процесса микроструктура — весьма мелкие, но протяженные пластинчатые кристаллики, легко соединяющиеся в кристаллическую сеть [201. Было найдено, что при добавлении к дистил-лятному сырью продукта остаточного происхождения резко изменялась его микроструктура и вместо пластинчатых монокристалликов выделялись плотные, не связанные между собой дендритные образования. Такая смесь дистиллятного и остаточною продуктов поддавалась центрифугированию уже вполне удовлетворительно. [c.132]

    При регенерации же растворителя из раствора гача отгоняемый растворитель получается влажным на всех ступенях отгона, поскольку в растворе гача собирается влага из всего депарафинируемого раствора. Это происходит потому, что влага выделяется из раствора в виде кристалликов льда, которые затем отлагаются с гачем на фильтрующей поверхности вакуумных фильтров и далее переходят в раствор гача. Влажный растворитель, отгоняемый из раствора гача на колоннах К-5 и К-6, собирают в емкость Е-6 А. [c.243]


Смотреть страницы где упоминается термин Кристаллик : [c.102]    [c.15]    [c.18]    [c.52]    [c.65]    [c.76]    [c.101]    [c.112]    [c.112]    [c.155]   
Курс органической химии (0) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте