Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства волокнообразующих полимеров температура плавления

    Полиамиды, сложные полиэфиры и полиуретаны являются превосходными синтетическими волокнообразующими полимерами некоторые из них находят промышленное применение. Наряду с этими полимерами имеются и некоторые другие типы конденсационных полимеров, химическое строение которых обусловливает их способность к волокнообразованию. Карозерс и его сотрудники в своих капитальных исследованиях в области высокомолекулярных линейных полимеров разработали синтез большого числа полимеров конденсационного типа. Некоторые из них, как показал Хилл [1], обладают волокнообразующими свойствами. После этих работ значительно возрос научный и технический интерес к волокнообразующим конденсационным полимерам, что вызвало интенсивное развитие исследований в этой области. Как будет показано ниже, полиамиды, сложные полиэфиры и полиуретаны—далеко не единственные вещества, способные давать волокна. Применяя методы органического синтеза, можно получить многочисленные разнообразные полимеры, обладающие удовлетворительными волокнообразующими свойствами необходимо лишь правильно подобрать исходные компоненты и довести реакцию поликондепсации до образования продуктов с достаточно высоким молекулярным весом. Однако, не говоря уже об ограничениях, обусловленных требованиями к физикомеханическим свойствам конечных продуктов, получение многих из этих продуктов является экономически невыгодным. Действительно, ни один из волокнообразующих конденсационных полимеров, рассматриваемых в настоящей статье, не производится в промышленном масштабе. Однако исследование этих полимеров способствует развитию науки о синтетических волокнах. На их примере подтверждаются основы теории волокнообразующих полимеров, разработанные за последние двадцать лет. Еще раз было показано, что факторами, влияющими на волокнообразующие свойства полимеров, являются их температура плавления, пространственная конфигурация макромолекул, способность к кристаллизации и ориентации, взаимодействие цепей и их жесткость. Правда, сколько-нибудь подробно предсказывать свойства волокна на основе данных о химическом строении пока еще не представляется возможным. [c.161]


    Наличие в линейной молекуле ароматических колец делает ее более жесткой, увеличивает силы межмолекулярного взаимодействия и приводит к увеличению температуры плавления полимера. Только одно волокно из выпускаемых в промышленном масштабе — терилен, или дакрон—содержит ароматические ядра в качестве одного из главных компонентов макромолекулы. Первые полиэфиры, полученные Карозерсом даже раньше, чем полиамиды, обладали волокнообразующими свойствами, но имели низкие точки плавления и слишком легко гидролизовались для того, чтобы иметь практическую ценность. Если полиэфир [c.107]

    Большое влияние оказывает структура волокна и на его термостойкость. В отличиё от природных волокон, которые вследствие своей полярности разлагаются без плавления, синтетические волокна в большинстве случаев термопластичны. Некоторые из них достаточно устойчивы при нагревании выше температуры плавления, что позволяет проводить формование волокна прямо из расплава полимера (таковы, например, найлон-6, найлон-6,6, полиэтилентерефталат и полипропилен). Формование волокон из термически нестойких полимеров, особенно полиак-рилонитрила, ацетатов целлюлозы, поливинилового спирта и поливинилхлорида, производится более трудоемким способом полимер растворяют в подходящем растворителе и полученный раствор выдавливают через отверстия фильеры в поток горячего воздуха, вызывающего испарение растворителя, или в осадительную ванну. Безусловно, формование из расплава (там, где оно возможно) является наиболее предпочтительным методом получения волокна. Низкоплавкие волокна во многих случаях имеют очевидные недостатки. Например, одежда и обивка мебели, изготовленные из таких волокон, легко прожигаются перегретым утюгом, тлеющим табачным пеплом или горящей сигаретой. Желательно, чтобы волокно сохраняло свою форму при нагревании до 100 или даже 150 °С, так как от этого зависит максимально допустимая температура его текстильной обработки, а также максимальная температура стирки и химической чистки полученных из него изделий. Очень важным свойством волокна является окрашиваемость. Если природные волокна обладают высоким сродством к водорастворимым красителям и содержат большое число реакционноспособных функциональных групп, на которых сорбируется красящее вещество, то синтетические волокна более гидрофобны, и для них пришлось разработать новые красители и специальные методы крашения. В ряде случаев волокнообразующий полимер модифицируют путем введения в него звеньев второго мономера, которые не только нарушают регулярность структуры и тем самым повышают реакционную способность полимера, но и несут функциональные группы, способные сорбировать красители (гл. Ю). Поскольку почти все синтетические волокна бесцветны, их можно окрасить в любой желаемый цвет. Исключение составляют лишь некоторые термостойкие волокна специального назначения, полученные на основе полимеров с конденсированными ароматическими ядрами. Матирование синтетических волокон производится с помощью добавки неорганического пигмента, обычно двуокиси титана. Фотоинициированное окисление [c.285]


    Подробное изучение свойств полиэфиров, полученных Карозерсом с Хиллом [6], в качестве волокнообразующих полимеров показало их недостатки по сравнению с полиамидами [11,12]. Это объясняется тем, что использованные Карозерсом алифатические мономеры (например, себациновая кислота и этиленгликоль) при поликонденсации образовывали полиэфиры с низкой температурой плавления (ниже 107°), которые растворялись к тому же во многих органических растворителях. [c.14]

    Свойства. Полиуретаны принадлежат к числу кристаллических, волокнообразующих полимеров, имеющих достаточно высокие температуры плавления вследствие образования водородных связей между макромолекулами полимера за счет амидных групп. Однако их температура плавления ниже, чем у соответствующих полиамидов благодаря большей гибкости цепи, связанной с присутствием в макромолекуле простой эфирной связи. Так, если полиуретан состава [c.180]

    Низкотемпературная полимеризация винилхлорида под влиянием радикальных инициаторов в последние годы приобретает все большее значение в связи с тем, что этот способ полимеризации позволяет получать стереорегулярный кристаллический поливинилхлорид, который отличается от обычного атактического поливинилхлорида повышенной плотностью, более низкой вязкостью, хорошими волокнообразующими свойствами, повышенным модулем Юнга, температурой стеклования и температурой плавления. Так, например, полимеризация винилхлорида при температурах от +50 до —80°С приводит к получению полимеров, у которых по мере снижения температуры полимеризации увеличивается длина молекулярной цепи микрокристаллов от 40 до 85 А и соответственно возрастает плотность от 1,378 до 1,393 Модуль Юнга у поливинилхлорида, полученного при —15° С, в полтора раза выше, чем у обычного полимера. [c.462]

    Полиэтилен имеет один недостаток — он плавится при сравнительно низкой температуре (110—130°С). Полученный позже полипропилен (формула 1.6), который, как мы уже видели, по своему строению очень близок к полиэтилену, имеет преимущество перед последним, заключающееся в бояее высокой температуре плавления (170°С), не зависящей от того, находится ли полипропилен в неориентированном состоянии, или в форме волокна. По остальным свойствам он очень похож на полиэтилен и поэтому может использоваться для тех же целей. Еще один важный кристаллический полимер — это найлон, который первоначально получили и все еще получают, главным образом имея в виду его отличные волокнообразующие свойства однако он может быть также получен в виде блоков для производства изделий методом литья под давлением. Температура плавления найлона 265 °С. [c.22]

    Алифатические полиэфиры имеют низкую температуру плавления и поэтому не представляют интереса для производства синтетических волокон однако они заслуживают упоминания, так как изучение 1 х свойств обусловило в известной степени последние достижения в области волокнообразующих полимеров кроме того, в настоящее время имеется много данных о структуре кристаллических областей таких полиэфиров и они довольно интересны с точки зрения стереохимии. [c.271]

    Таким образом, при оценке волокнообразующей способности полимера (например, полиамида) следует учитывать, что с ростом в цепи числа амидных групп изменяются не только температуры стеклования и плавления, но и другие свойства полимеров. [c.45]

    Полимер, полученный из этого мономера, обладает волокнообразующими свойствами и имеет температуру плавления 235—240°С. Пониженная температура плавления по сравнению с выше0писа н1нымн полимерами объясняется наличием метокси-группы в ароматическом ядре, которая превращает молекулу в несимметричную и препятствует плотной упаковке кристаллической решетки [290—292]. [c.83]

    Кроме политиазолов с полиметиленовыми группами, растворимостью в органических растворителях и пленко- и волокнообразующими свойствами обладали ароматические политик азолы, у которых температура плавления не превышала Такими полимерами, в частности, являлись поли-[2,2 -(2,2 -дифенилен) -4,4 - (п-фенилен) ]-тиазол и поли-[2,2 - (2,2 -дифени-лен) -4,4 - (п,п -дифениленоксид]-тиазол. [c.67]

    Свойства и применение. Полиуретаны представляют кристаллические, волокнообразующие полимеры, имеющие достаточно высокие температуры плавления вследствие образования водородных связей между макромо-лекулами полимера за счет амид-пл авле я х групп. Их температура плав- [c.224]

    Колманом было показано, что для простых полиэфиров выполняются условия а — в . Эти полиэфиры обладают также достаточно высокой химической стабильностью (ср. также [38]). В результате блокполиконденсации полиэтилен гликоля молекулярного веса 1000—6000 с полиэтиленгликольтерефталатом (соотношение компонентов 30 70) образуется блокполиэфир с высокой температурой плавления ). Одновременно значительно улучшается накрашиваемость, гигроскопичность и гибкость полиэфира при сохранении неизменными (как у исходного полиэтиленгликольтерефталата) вязкости и способности к вытягиванию. Однако, несмотря на ряд ценных свойств этого блоксополиэфира, использовать его в качестве волокнообразующего полимера не представляется возможным вследствие низкой светостойкости. [c.64]


    Суммируя все выше изложенное, следует отметить, что принцип привитой и блоксополиконденсации может быть использован при синтезе волокнообразующих полимеров с целью изменения их свойств в требуемом направлении. Правда, такие продукты поли-конденсации — за немногими исключениями — пока не нашли применения в промышленности химических волокон, поскольку метод их получения сравнительно сложен. Работы в этом направлении не вышли еще за рамки лабораторных исследований. Однако, вероятно, можно не сомневаться в том, что модифицированные методами блок- и привитой сополиконденсации полимеры, кратко описанные в этом разделе и в части I, разделе 2.2.4, сыграют большую роль в дальнейшем техническом развитии промышленности синтетических волокон (см. также [111]). В этой связи можно напомнить высказывание Марка [108] о том, что структура идеальных полимеров должна объединять кристаллические области с высокой температурой плавления и аморфные участки с низкой температурой перехода второго рода ). Это дает возможность сочетать высокую прочность с хорошими усталостными характеристиками, вязкостью полимера и гибкостью цепи в широком интервале температур . [c.65]

    Регулярность строения изотактических полимеров определяет их физические свойства — высокую температуру плавления, высокую кристалличность, малую растворимость и хорощие механические свойства. Регулярностью строения этих полимеров объясняется уменьшение количества аморфной части и увеличение степени кристалличности, что, в свою очередь, приближает стереорегулярные полимеры к полимерам с волокнообразующими свойствами, а не к пластикам. Так, полистирол, в макромолекуле которого группы —СН2 — и — СН ( gHg) — расположены беспорядочно, является идеальным пластиком. Однако полистирол стереорегулярного строения имеет достаточно высокую температуру плавления, мало отличающуюся от температуры плавления перлона, и высокую прочность. [c.73]

    Как видно из данных, приведенных в табл. 7, полиуретаио-мочевины имели температуру плавления 240—260°С. Термическая обработка полимеров давала некоторое повышение вязкости. После расплавления вязкость полимеров падала, но незначительно. Все полимеры обладали волокнообразующими свойствами. [c.103]

    Любой гибкоцепной полимер в области температур, лежащих ниже температуры стеклования, становится жестким и теряет присущие ему большие высокоэластические деформации. Примером может служить натуральный каучук, охлажденный до температуры ниже —70 °С. Полиэтлиен и полипропилен от типичных каучуков отличаются тем, что температуры кристаллизации их выше 100 °С, поэтому при обычных условиях они являются высококристаллическими полимерами и обладают свойствами, присущими волокнообразующим полимерам. При нарушении регулярности цепи, например в результате хлорирования или хлорсульфирования полиэтилена, снижается степень кристалличности и температура плавления полимера и он уже при обычной температуре становится каучукоподобным. Аналогичные изменения свойств наблюдаются для сополимеров этилена и полипропилена при содержании в них более 15% пропилена. [c.201]

    Ценностью этой книги является то, что в ней рассматриваются не только реакции, лежащие в основе синтеза почти всех современных видов волокнообразующих полимеров, получаемых как методами цепной радикальной полимеризации, так и методами поликонденсации, но и основные физические и физико-химические свойства полимеров в зависимости от их химического строения. Существенное внимание в книге уделено рассмотрению вопросов о кристалличности полимеров в связи с их химической природой, установлению количественного соотношения между кристаллической и аморфной фазами, а также вопросам молекулярной ориентации в полимерах. Обсул<даются вопросы о влиянии строения полимерной цепи и наличия боковых групп на температуру плавления полимеров. Интересным в книге является материал, посвященный рассмотрению технологических методов формования синтетических волокон, а также проблем крашения. [c.5]

    Высокомолекулярные волокнообразующие полимеры можно получать также изш-аминокарбоновых кислот или их производных.Эти полимеры в значительной мере обладают такими же свойствами, как и полиамиды из диаминов и дикарбоновых кислот они жестки, кристалличны, имеют высокую температуру плавления и ограниченную растворимость. Интересно отметить, что первый волокнообразующий полиамид был получен Карозерсом в 1935 г. из аминокислоты, а именно из со-аминононаповой кислоты. Это открытие привело к интенсификации исследований полиамидов, в результате чего был разработан метод производства найлона 66 132]. Из ш-аминокарбоновых кислот был получен ряд полиамидов 133], однако простой арифметический расчет показывает, что этот класс мономеров не может дать такого многообразия полиамидов, как сочетание различных диаминов и дикарбоновых кислот. Лишь один полиамид на основе ш-аминокислоты, а именно полиамид 6 [17, 31, 34], производится в промышленных масштабах в настоящее время разрабатывается также метод производства другого полиамида этого класса—полиамида 11 из ш-аминоундекаповой кислоты. Возможно, что и волокнообразующий полиамид 7 (из ш-аминогептановой кислоты), плавящийся при 225°, приобретет со временем промышленное значение. Исходную ш-аминокислоту для производства этого полиамида можно получить из фурфурола через тетрагидропиран, образующийся при дегидратации тетрагидрофурфурилового спирта над окисью алюминия и последующем гидрировании [22, 35.  [c.124]

    Значительное число работ посвящено исследованию влияния гетероатомов в исходных компонентах на свойства образующихся полимеров. Эти атомы прерывают полиметиленовые цепи, соединенные между собой амидными группами, и могут вызывать сильное и характерное изменение свойств полиамидов,, сохраняющих, однако, при соблюдении молекулярной симметрии волокнообразующие свойства. Введение атомов кислорода и серы (простые эфирные или тиоэфирные группы) делает молекулярные цепи более гибкими, в результате чего понижается температура плавления полимеров. Получение полимеров, содержащих простые эфирные группы, не представляет трудностей. Присутствие этих групп увеличивает также гидрофильность полимера в некоторых случаях этот эффект настолько сильно выражен, что полиамиды становятся даже растворимыми в воде, как например это имеет место в случае полиамида, получаемого из 1,2-ди-(Р-аминоэтокси)этана и адипиновой кислоты [58]. Этот полиамид [—(СН2)а0(СН2)20(СН2)2МН0С(СН2)4С0ЫН—] , содержащий по две эфирные группы в каждом остатке диамина, плавится при 160°, образует волокна и легко растворяется в горячей воде. Дигликолевая кислота и пентаметилендиамин или ди-7-аминопропиловый эфир и адипиновая кислота дают полиамиды (т. пл. соответственно 130 и 190°), менее чувствительные к воде [59, 64]. Следует отметить, что введение тиоэфирных группировок приводит к некоторой термической неустойчивости. [c.133]

    Полиэфиры на основе этиленгликоля и нафталиндикарбоновых ки лot представляют некоторый интерес с той точки зрения, что они прекрасно иллюстрируют влияние структуры полимеров на их температуру плавления и кристалличность. В то время как кислота-1,4 дает некристаллический полимер, полиэфир из КИСЛОТЫ-2,7, хотя и не имеет кристаллического строения, более высокоплавок и обладает волокнообразующими свойствами. С другой стороны, кислоты-1,5 и -2,6 дают ряд кристаллических волокнообразующих полиэфиров, причем из более симметричной кислоты-2,6 получаются более высокоплавкие продукты. Аналогичная закономерность наблюдается и в ряду полиэфиров на основе дифенилендикарбоновых кислот (табл. 22). [c.148]


Смотреть страницы где упоминается термин Свойства волокнообразующих полимеров температура плавления: [c.438]    [c.357]    [c.101]   
Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Волокнообразующие полимеры температура плавления

Полимер температура плавления

Свойства волокнообразующих полимеро

Свойства волокнообразующих полимеров

Температура плавления

Температура полимеров



© 2025 chem21.info Реклама на сайте