Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поливинилхлорид кристаллический

    КРИСТАЛЛИЧЕСКИЙ ПОЛИВИНИЛХЛОРИД (СИНТЕЗ В СРЕДЕ МАСЛЯНОГО АЛЬДЕГИДА) [c.61]

    В противоположность поливинилхлориду, поливинилиденхлорид содержит наряду с аморфной фазой ясно выраженную кристаллическую фазу. Сочетание звеньев в макромолекулах поливинилиденхлорида происходит по схеме голова к хвосту . Плотность полимера может достигать 1,875 г/с.и , что несколько ниже [c.274]

    Сополимеры в большинстве случаев существенно отличаются по своим физическим свойствам от соответствующих гомополимеров. Например, при включении небольшого количества винилацетата в поливинилхлорид достигается внутренняя пластификация (см. раздел 1.4). Окрашиваемость синтетических волокон может быть улучшена включением малого количества специально подбираемого сомономера. Кроме того, в общем случае существует большое различие в растворимости сополимеров и соответствующих им гомополимеров (см. опыт 3-42). Свойства сополимеров, содержащих эквимольные количества звеньев обоих типов, распределенных статистически, часто значительно отличаются от свойств соответствующих им гомополимеров. Так, полиэтилен и изотактический полипропилен представляют собой кристаллические полимеры, имею- [c.173]


    Пригодность метода ЯМР для определения воды показана на примерах ацетона [426] поливинилхлорида, кристаллического сульфата меди цеолита [427] перхлората аммония [428] тетраоксида азота [429] и других веществ [430]. Минимальный уровень определяемых концентраций воды составляет обычно несколько десятых процента. Применение спектрометров высокого разрешения позволяет снизить этот уровень приблизительно на порядок. Эти результаты сами по себе представляют, вообще говоря, мало интереса другие методы, более доступные и простые, позволяют решать те же задачи значительно точнее и с большей чувствительностью. Метод ЯМР, как уже отмечалось, привлекает внимание тем, что наряду с определением содержания воды дополнительно дает весьма ценную информацию. [c.183]

    Однако эти материалы сохраняют прозрачность, а данные исследований методом рентгеновской дифракции [14] не дают реальной информации о существовании в таких материалах, за исключением поливинилхлорида, кристаллических доменов. Можно полагать, что антипластификация является результатом возрастания сил межмолекулярного взаимодействия и уменьшения в связи с этим свободы вращения и развертывания цепей. [c.75]

    Поливинилхлорид не образует кристаллической фазы, но его можно ориентировать при сильном растяжении. [c.266]

    Для кристаллических веществ, содержащих квадрупольные-ядра, можно наблюдать четкий сигнал ЯКР. Если в исследуемом образце квадрупольные ядра занимают химически или кристаллографически не эквивалентные положения, то спектр ЯКР будег состоять из двух или более сигналов. Так, в случае поливинилхлорида проявляются два сигнала от ядер хлора на частотах 37,. 25 и 38,04 МГц. [c.277]

    Молекулярная цепь ПВФ содержит только один атом фтора, и этим определяется существенное его отличие от других фторполимеров. Справедливо было бы сравнивать ПВФ с более близким ему по природе полиэтиленом (ПЭ) или поливинилхлоридом (ПВХ). Как и ПЭ, но в отличие от ПВХ, ПВФ — кристаллический полимер со степенью кристалличности [c.73]

    Все полимеры характеризуются переходом в стеклообразное состояние при определенной температуре или в определенном температурном интервале. У аморфных полимеров (полистирола, полиметилметакрилата, поливинилхлорида) температура стеклования— вполне четкая величина, тогда как у частично кристаллических полимеров, например полиэтилена, она выражена менее отчетливо, так как стеклование затрагивает только аморфную некристаллическую часть полимера. [c.152]

    Сравнительно малый температурный интервал между температурой переработки в расплаве (200—230 °С) и теплостойкостью (140—150 °С) обусловливает малые термические напряжения в изделиях из пентапласта по сравнению с другими полимерами. Это позволяет применять пентапласт в конструкциях, армированных металлом. По реологическим свойствам и условиям литья пентапласт напоминает полипропилен, однако интервал переработки лежит в более узких пределах. По термостабильности пентапласт превосходит полиамиды, поливинилхлорид, полиформальдегид. Малое изменение плотности пентапласта при переходе из аморфной (1,38 г/см ) в кристаллическую (1,41 г/см ) фазу и сравнительно небольшой интервал между температурами литья и эксплуатации обусловливают возможность получения изделий различной сложности и армированных металлом с хорошими технологическими свойствами. [c.276]


    Особенности условий переработки смесей каучуков с ингредиентами в отличие от условий переработки термопластов (безразлично— кристаллических или аморфных) связаны с наличием в резиновых смесях серы и ускорительной группы, необходимых для вулканизации. Верхний температурный предел переработки смесей ограничен ПО—П5°С. Непредельность молекул, с одной стороны, позволяет вулканизовать каучуки, а с другой — одновременно повышает их склонность к деструкции. Каучуки перерабатывают при температурах, соответствующих области перехода от высокоэластического состояния в вязкотекучее [17—19]. Для эластомеров эта область, как правило, составляет сотни градусов, в то время как для аморфных предельных полимеров, таких как полистирол или поливинилхлорид, по-видимому, составляет не более 50—100°С, а для кристаллизующихся — полиэтилена, полиамидов, полиэфиров — практически отсутствует (не более 10— 20 °С). [c.10]

    Кристаллические и кристаллизующиеся полимеры (например, полиэтилен) пластифицируются избирательно, часто в результате введения пластификатора наблюдается отрицательный эффект — ускорение рекристаллизации, образование крупных кристаллических структур и возникновение хрупкости [7]. В соответствии с изложенным при пластификации поливинилацетата эфирами дикарбоновых кислот наблюдается прямая зависимость эффективности пластификатора от числа метиленовых групп в эфире и количества введенного пластификатора [8]. При пластификации поливинилхлорида лучшим пластификатором является диоктилсебацинат. [c.242]

    Исследованные термопластичные аморфные (поливинилхлорид и полиметилметакрилат) и частично-кристаллические (полиэтилены низкого и высокого давлений) полимеры имеют следующие структурные формулы  [c.561]

    В настоящее время изучено влияние давления на дипольную ориентационную поляризацию большого числа аморфных полимеров и некоторых частично кристаллических полимеров. На рис. 37 в качестве примера приведены зависимости 1 /макс от обратной абсолютной температуры для поливинилхлорида. Из рис. 37 видно, что при постоянной температуре увеличение давления приводит к смещению максимумов дипольно-сегментальных и дипольно-групповых потерь к более низким частотам, а при измерениях на постоянной частоте — к более высоким температурам. Таким образом, если при повышении температуры время релаксации уменьшается, то повышение давления вызывает увеличение времени релаксации. [c.88]

    Высушенный микроскопический порошок, полученный из эмульсионного полимера, применяют также для получения органозолей и пластизолей — композиций для поверхностных покрытий, представляющих собой пигментированные полимерные дисперсии в органических жидкостях и пластифицирующих растворителях [12]. Одна из наиболее широко используемых композиций для поверхностных покрытий — органозоль на основе поливинилхлорида. К порошку полимера прибавляют органические жидкости и перемешивают для разрушения агломератов, чтобы получить дискретные и частично набухшие частицы полимера. Полное растворение частиц поливинилхлорида предотвращают присутствующие в полимерной матрице кристаллические [c.225]

    Полиакрилонитрил — частично кристаллический полимер, что приводит к предположению о высокой степени его стереорегулярности. Действительно, это утверждалось в ряде работ на основании анализа ИК-спектров [20, 21], хотя другие исследования методом ИК-спектроскопии [22] привели к выводу, что полиакрилонитрил имеет почти нерегулярное строение (в согласии с данными ЯМР —см. разд. 4.4). Различия в способности к кристаллизации [23, 24] и размерах цепи в растворе [25] в зависимости от температуры полимеризации заставили высказать предположение о большей синдиотактической регулярности полимеров, полученных при низких температурах. Этот вывод аналогичен рассмотренному в предыдущем разделе для поливинилхлорида, но еще менее обоснован экспериментально. Спектры р-метиленовых протонов поли- [c.162]

    Наиболее важны начальные значения О, но в табл. 62 приведены также полученные при высоких дозах значения, которые меньше начальных значений. Очень высокие значения для поливинилхлорида [87, 106] получены в результате экстраполяции, с помощью которой пытались учесть очень быстрое исчезновение одного из типов радикалов. В каучукоподобных полимерах, облученных при комнатной температуре, редко удается обнаружить радикалы, хотя они образуются в таких гибких, но кристаллических материалах, как полиэтилен и политетрафторэтилен. [c.445]

    Измерены комбинационные спектры полиэти.лена, поливинилхлорида, кристаллического полиэфира адиниповой кислоты. [c.494]

    Полимеризация винилхлорида при помощи каталитической системы [Т1р4 + А1 (/-С4Н9)з приводит к получению синдиотактического поливинилхлорида Кристаллический поливинилхлорид был получен при полимеризации винилхлорида в присутствии грет-бутилмагнийхлорида [c.99]


    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Условия литья отдельных термопластов тесно связаны с их мкческой природой. По своему характеру термопласты разделяются на три группы аморфные — эфиры целлюлозы, полиметилмета-крилат, полистирол и твердый поливинилхлорид кристаллические— полиамиды, полиэтилен и полихлорвинилиден эластомеры — г йбкий поливинилхлорид и некоторые другие. [c.258]

    По фазовому состоянию не содержащие наполнителей (ненаполненные) ТП м. б. одно- и двухфазными аморфными, аморфно-кристаллическими и жидкокристаллическими. К однофазным аморфным ТП относятся полистирол, полиметакрилаты, полифениленоксиды, к-рые эксплуатируются в стеклообразном состоянии и обладают высокой хрупкостью. По св-вам им близки стеклообразные аморфно-кристаллич. ТП, имеющие низкую степень кристалличности (менее 25%), напр, поливинилхлорид, поликарбонаты, полиэтилентерефталат, и двухфазные аморфные ТП на основе смесей полимеров и привитых сополимеров, напр, ударопрочный полистирол, АБС-пластики, состоящие из непрерывной стеклообразной и тонкоднспергир. эластичной фаз. Деформац. теплостойкость таких ТП определяет т-ра стеклования, лежащая в интервале 90-220 °С. [c.564]

    Однако рентгеновские и спектроскопические исследования указывают на резкое отличие хлорированного поливинилхлорида от поливинилиденхлорида. Полностью хлорированный поливинил хлорид имеет аморфную структуру, не кристаллизуется, плот ность его равна 1,65 г см температура размягчения ПО—120° Поливинилиденхлорид имеет кристаллическую структуру плотность его равна 1,87 г1см - , температура размягчения 185—200° количество метиленовых групп соответствует половине количества атомов хлора, содержащихся в полимере. [c.273]

    Наряду с кристаллическими мембранами в ИСЭ используются также гетерогенные мембраны (мембраны Пунгора), в которых твердый материал с ионной проводимостью в виде тонкодисперсного порошка помещен в инертную матрицу. Благодаря этому удается получить мембраны из соединений, которые не образуют кристаллы. В качестве активных веществ в таких мембранах применяют самые разнообразные материалы (труднорастворимые соли металлов, оксиды, карбиды, бориды, силициды, хелатные соединения, ионообменные смолы), а в качестве связующего материала - парафин, коллодий, поливинилхлорид, полистирол, полиэтилен, силиконовый каучук и др. Разработаны электроды с мембранами, селективными по отношению к ионам Р", СГ, Вг", Г, 8 , Ag", Ва ",Са ", 80/ , Р04 , а также ртутный электрод с мембраной из Hg8 или Hg8e в эпоксидной матрице. Некоторые из электродов выпускаются промышленностью. Считается, что они менее чувствительны к [c.200]

    Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления — кристаллизации 7к он находится в твердом состоянии, но обладает различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 2). Это связано с тем, что аморфная часть полимера в силу принципа автономности элементов суперсетки (см. 3) также мол<ет находиться в разных релаксационных состояниях. Однако наличие кристаллической фазы смещает границы релаксационных состояний и вообще существенно изменяет структуру аморфньгх участков по сравнению со свободной аморфной фазой. В тех случаях, когда полимер слабо закристаллизован, то выше Тс он деформируется практически как некристаллический полимер. Типичный пример— Обычные марки поливинилхлорида. [c.70]

    Применение импульсных спектрометров ЯКР позволяет обнаруживать сигналы большой ширины ( 2% от значения частоты против - 0,02% при стационарных методах). Это сделало возможным исследование структур с неустранимыми элементами беспорядка. К таким системам относятся, в частности, кристаллические полимеры. Данные спектроскопии ЯКР позволяют судить о структуре, характере расположения и подвижности полимерных молекул в кристалле. Изучены спектры ряда хлорсодержащих полимеров. У поливинилхлорида, например, в спектре найдено восемь компонентов сигнала, которым должно соответствовать восемь типов кристаллографически неэквивалентных атомов хлора. Частотный диапазон сигнала от 36,56 до 38,18 МГц свидетельствует о наличии химической неэквивалентности (различном химическом окружении) атомов С1 в полимере. Изучались и неорганические полимеры с малой степенью беспорядка и достаточно уакими линиями, например, на основе (МГал2) и (МГалз)п, где М —металл, а Гал —галоген. [c.104]

    Выбор методик в данном выпуске интересен тем, что в него включены, в частности, способы получения кристаллического и атактического полистирола, кристаллического поливинилхлорида, стереорегулярно-го поливинилтрифторацетата и др. [c.4]

    Наиболее очевидный случай неоднозначности значений вязкости образцов с одинаковыми молекулярными характеристиками — это следствие сохранения в расплаве остатков кристаллической структуры и ее высших форм, которые могут быть различными. Это особенно типично, например, для поливинилхлорида, поскольку из-за очень низкой степени кристалличности и большой дефектности кристаллов он может течь при температурах, лежащих ниже равновесной температуры плавления кристаллической фазы . Другой очень своеобразный случай наблюдался Г. П. Андриановой , которая обнаружила, что вязкость полистирола зависит от концентрации, и качества (сродства к макромолекулам) того растворителя, из которого был получен образец сублимацией растворителя. Этот факт можно трактовать, как следствие сохранения в расплаве некоторой структуры, которой обладал полимер в растворе и которая зависела от природы растворителя и концентрации раствора, причем структура оказалась весьма устойчивой к последующим термомеханическим воздействиям на материал. В этой связи следует также заметить, что структурные перестройки в цасплаве вообще происходят гораздо медленнее, чем осуществляется механическая релаксация. [c.181]

    В литературе олисаны три других метода получения кристаллического поливинилхлорида  [c.63]

    Значительные усилия, во многих случаях небезуспешные, были затрачены на изучение структуры полимеров методом ИК-спектроскопии. ИК-спектры полимеров с кристаллической и аморфной структурами обычно различаются. Этим методом можно исследовать расположение мономерных единиц в полимере и особенности их конфигурации, упаковку и разветвленность цепей. Иногда, например, возможно отличить блок-сополимеры от статистических, если одна из мономерных единиц содержит ассоциативные группы, а другая нет. В этом случае количество ассоциативных групп дает меру неупорядоченности в полимере. В некоторых случаях одна из мономерных единиц чувствительна к окружению, и в сополимере происходит изменение частоты по сравнению с гомополимером. В качестве примера можно привести [216] систему винилхлорид — винилиденхлорид, в спектре которой полоса чистого поливинилхлорида 1250 см (8 мкм) при сополимеризации сдвигается к 1203 см (8,3 мкм). Эта полоса обусловлена колебаниями изолированного фрагмента (—СН2СНС1—) в цепочках поливинил иденхлорида. [c.204]

    ММР и молекулярная масса влияют а физико-механические свойства полимеров непосредственно или косвенно, определяя кристаллическую структуру, плотность, степень ориентации. Исследования зависимостей прочности при растяжении, удлинения при разрыве, прочности при изгибе полистирола, полиэтилена, полипропилена, поливинилхлорида и других по -меров показали, что прочность растет при увеличении Мш и Мп до некоторых критически значший, а затем сохраняется постоянной. Если значения Мш и М выше критических, то прочностные характеристики полимера не зависят от ММР. [c.144]

    После прекращения облучения повышенные значения tg б могут сохраняться довольно долго, если полимер не подвергается после облучения отжигу. Например, у облученного полиэтилена высокой плотности [77] после прекращения облучения сохраняются повышенные значения tgб и е при частотах 60—1000 Гц в области температур 353—393 К (причем е и tg б тем больше, чем ниже частота и чем выше температура). При прогреве облученного полиэтилена выше температуры плавления tg б и е/ резко и необратимо уменьшаются. Это явление объясняют большим временем жизни носителей тока в кристаллических областях полимера. Однако увеличение е и б полиэтилена после облучения может быть связано и с наличием долгоживущих в кристаллических областях продуктов радиолиза — пероксидов. К обратимым изменениям диэлектрических характеристик в процессе облучения могут привести продукты раднолиза и у полярных полимеров. Например, при мощности дозы более 25,8 мА/кг у поливинилхлорида и политрифторхлорэтилена наблюдали небольшой обратимый сдвиг максимумов tg б в сторону более высоких частот, приписываемый пластифицирующему действию продуктов радиолиза [78]. [c.95]


Смотреть страницы где упоминается термин Поливинилхлорид кристаллический: [c.71]    [c.275]    [c.233]    [c.536]    [c.787]    [c.62]    [c.63]    [c.64]    [c.209]    [c.209]    [c.430]    [c.328]    [c.123]    [c.163]    [c.75]    [c.44]   
Макромолекулярные синтезы Выпуск 2 (1969) -- [ c.61 ]

Прогресс полимерной химии (1965) -- [ c.44 ]

Прогресс полимерной химии (1965) -- [ c.44 ]

Химия и технология синтетических высокомолекулярных соединений Том 9 (1967) -- [ c.479 ]

Получение и свойства поливинилхлорида (1968) -- [ c.134 , c.168 , c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2024 chem21.info Реклама на сайте