Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислота методы производства также

    При сопоставлении технико-экономических показателей различных методов производства высших жирных спиртов необходимо учитывать, что получаемые спирты резко отличаются друг от друга по своему качеству. Поэтому данные табл. 56 носят справочный характер и не могут служить основой для выбора наиболее рационального способа получения высших спиртов. При гидрировании эфиров жирных кислот, а также в процессе прямого гидрирования жирных кислот образуются первичные спирты нормаль- [c.184]


    Указанный метод служит также для окисления смеси ксилолов с получением фталевого ангидрида, тере- и изофталевой кислот и применяется в промышленном масштабе фирмой Амоко кемикл корпорейшн (США). Кислоты, получающиеся при совместном окислении ксилолов, затем этерифицируются и применяются в производстве полиэфирных и полиамидных волокон. Изофталевая кислота применяется в производстве высококачественных алкидных смол  [c.366]

    Минеральные соли классифицируют по их происхождению (природные и синтетические), по составу (соли натрия, фосфора и т. п.), по методам производства, а также по принципу их потребления. Основным потребителем минеральных солей является сельское хозяйство. В наибольших масштабах производят соли, используемые в качестве минеральных удобрений и пестицидов (препаратов, применяемых для защиты растений). В нромышленности используют разнообразные минеральные соли, некоторые из них в больших количествах. Химическая промышленность является не только производителем, по и одним из наиболее крупных потребителей минеральных солей особенно широко используют соли натрия. Поваренная соль расходуется в громадных количествах как основное сырье для производства хлора, соды, соляной кислоты, едкого натра. Сульфат натрия служит сырьем для производства сульфида натрия и стекла. Сульфид натрия, сульфитные соли (тиосульфат, сульфит и гидросульфит натрия), фториды натрия, дихроматы натрия и калия, фосфаты натрия и многие другие соли, в том числе соли железа, алюминия, бария, применяют в производстве красителей, химических реактивов, катализаторов, искусственного волокна, пластических масс, резины, моющих средств и в других химических производствах. [c.139]

    Окисление альдегидов, низших парафиновых углеводородов (гл. 4, стр. 70) и твердого парафина (гл. 4, стр. 74), а также процессы, в которых используют реакции между спиртами и окисью углерода или олефинами, окисью углерода и водой, являются важнейшими методами производства насыщенных карбоновых кислот. [c.333]

    Окисление пропионового альдегида кислородом протекает так же, как окисление ацетальдегида. В результате получают либо пропионовую кис- лоту [16], либо ее смесь с пропионовым ангидридом. Кислоту или ангидрид можно также синтезировать из этилена, воды и окиси углерода (или карбонила никеля), как это описано в гл. 11 (стр. 194). Пропионовая кислота образуется также при окислении н-бутана воздухом под давлением (гл. 4, стр. 72). Действуя на н-пропиловый спирт едким натром, можно получить пропионат натрия. Этот метод является общим методом производства высших кислот из соответствующих первичных высших спиртов нормального или изостроения . Процесс проводят таким образом, что пары спирта пропускают в расплав едкого натра и алкоголята при 250°. Щелочи берут на 10— 20% больше, чем требуется по уравнению [c.339]


    Другим примером коренной перестройки существующей технологии могут служить новые способы получения гидрохинона и резорцина. Существующий промышленный периодический метод производства гидрохинона основан на окислении анилина в п-бен-зохинон и последующего его восстановления. При этом образуется значительное количество промышленных стоков, содержащих анилин, кислоты, смолы и т. д. Производство резорцина основано на щелочном плавлении ж-бензолдисульфокислоты и также сопровождается образованием значительных количеств промышленных стоков. [c.349]

    Развитие производства хлористого водорода и соляной кислоты и изменение соотношения различных методов производства были рассмотрены ранее в 5-й главе. Показано, что во всех промышленных странах с развитием производства органических хлорпродуктов, получаемых заместительным хлорированием углеводородов основное количество хлористого водорода и соляной кислоты стали получать из побочно образующегося хлористого водорода. Старые методы получения хлористого водорода из хлористого натрия и серной кислоты, а также прямым синтезом из хлора и водорода потеряли ведущую роль. После разработки способов очистки попутного хлористого водорода и соляной кислоты, получаемой из него, от органических примесей открылись широкие возможности для использования побочного хлористого водорода. [c.479]

    Фосфаты натрия получают преимущественно из термической фосфорной кислоты . Разработаны и используются также способы производства чистых солей из фосфорной кислоты, полученной сернокислотным методом, а также из суперфосфата. [c.278]

    Из металлов высокой коррозионной стойкостью при анодной поляризации в большинстве электролитов обладают чистая платина и ее сплавы с другими металлами платиновой группы (иридий, родий). Высокая коррозионная стойкость и приемлемые электрохимические характеристики платины и ее сплавов позволили использовать ее в качестве анодного материала на первых этапах развития процесса получения хлора и хлоратов электрохимическими методами, а также применять аноды из платины и ее сплавов в производстве перхлоратов, хлорной кислоты, надсерной кислоты и ее солей. [c.14]

    Соляная кислота, выделенная из предгидролизата и основного гидролизата, практически полностью регенерируется и с помощью удачного метода дистилляции освобождается от попавшей в нее при промывке воды. Расход соляной кислоты, по утверждению фирмы, сокращается относительно количества сухого вещества древесины до 5—6% против 18% по процессу, применявшемуся в 1948 г., и соответственно 9% —в 1952 г., благодаря чему процесс производства значительно удешевляется. При этом потребность в соляной кислоте может теперь также покрываться путем использования обычной продажной соляной кислоты. [c.56]

    Вильсон составил таблицу, иллюстрирующую зависимость влажности от температуры для серной кислоты, также применяемой в качестве осушителя, Вильсон с сотр. приводят данные о равновесном содержании влаги во многих обычно употребляемых веществах при различной влажности воздуха и комнатной температуре. Парциальное давление паров воды над смесью гексагидрата перхлората магния со следующим по порядку более бедным водой гидратом оказалось так мало, что смесь при стоянии в эксикаторе над пятиокисью фосфора постепенно (в течение 120 суток) приходит в состояние равновесия, причем количество воды, содержавшейся в исходном гексагидрате, уменьшается вдвое. Исходя из этого, предположили, что образовался тригидрат однако ни один из гидратов не может иметь определенного давления паров при заданной температуре (на основании числа степеней свободы, определяемых правилом фаз). Кроме того, следует отметить, что и другие авторы не смогли подтвердить присутствие тригидрата, исходя из давления паров и рентгеноструктурного анализа. Уиллард и Смит впервые разработали Методы синтеза безводного перхлората магния, а исследованием его гидратов занимались Смит, Рис и Харди, Промышленный метод производства дигидрата и безводного перхлората магния, используемых как осушители, описан Смитом и Рисом.  [c.154]

    Основным методом производства первичных спиртов в нашей стране на ближайшую перспективу остается метод каталитического восстановления водородом метиловых эфиров синтетических жирных кислот или прямого восстановления этих кислот. По этой технологии действуют установки на Шебекинском и Волгодонском химкомбинатах производительностью по 6 тыс. т в ГОД. В текущем пятилетии намечено расширение мощности установок на этих предприятиях, а также строительство еще нескольких установок. [c.142]


    В связи с переходом на использование для производства сульфата аммония кислот контактных систем взамен башенной предложен новый метод улучшения их качества, а также качества отработанных кислот от производства нафталина. Метод заключается в обработке кислот воздухом и удалении сернистого газа, что позволяет улучшить окраску сульфата аммония. Табл. 3. Библиогр. список 5 назв. [c.69]

    Ацетилен получают карбидным методом, а также крекингом метана (термоокислительным и в электрической дуге). Бесцветный газ, мало растворим в воде и этаноле, умеренно растворим в ацетоне (особенно под давлением). Ацетилен является важнейшим сырьем основного органического синтеза. Мировое производство ацетилена достигает 6 млн т/год. Его применяют для получения ацетальдегида, уксусной кислоты, тетрагидрофурана, дихлор- и трихлорэтиленов, акрилонитрила, винилхлорида, виниловых эфиров, акрилатов и продуктов их полимеризации. Т. самовоспл. 335 °С. Обладает слабым наркотическим действием, ПДК 0,3 мг/мЗ. [c.329]

    Обработка гидропероксида кумила разбавленной серной кислотой ведет к получению фенола и ацетона с высоким выходом. Эта схема, включающая окисление кумола и разложение его гидропероксида, лежит в основе одного из наиболее экономичных промышленных методов производства фенола и ацетона (кумольный метод получения фенола см. также в разд. 17.2). [c.474]

    Этот метод, называемый также аминолизом, применяют для производства К-алкил- и К,К-диалкиланилинов. Обычно в таких случаях алкилирование спиртами ведут в присутствии кислот. [c.366]

    Основными недостатками сернокислотного метода производства диоксида являются многостадийность и сложность процес-са, а также значительный расход серной кислоты К достоинствам этого метода можно отнести возможность использования сравнительно бедного титансодержащего сырья [c.275]

    Эти методы имеют ограниченное применение, например при использовании нафтеновых кислот для производства сиккативов. Если нафтеновые кислоты применяются в производстве мыла, то выделение жирных кислот не обязательно. Также, если они применяются в качестве одоранта для газов, не обязательно выделять из них фенолы. [c.281]

    При электрохимических методах производства перекиси водорода необходимо определять относительное содержание ее в смеси, в которой имеются также пероксосерная и пероксодисерная кислоты. По этому вопросу имеет- [c.468]

    Процесс полимеризации применяется в нефтеперерабатывающей промышленности в основном для переработки пропилена в поли-мербензин, представляющий смесь главным образом ди-, три- и тетрамеров пропилена с октановым числом около 80 по моторному методу. Возможны также получение ди- и тримеров бутенов и полимеризация смешанного сырья, содержащего пропилен и бутены. Додецены, получаемые в этом процессе, применяют для производства моющих средств. Катализаторы процесса приготавливают на основе фосфорной кислоты. [c.189]

    Первая установка по производству синтетической уксусной кислоты каталитическим окислением ацетальдегида была пущена на Чер-нореченском химическом заводе в 1932 г., а в 1948 г. было организовано ее промышленное производство. К 60-м годам уксусная кислота производилась также пиролизом ацетона через кетен, окислением узких фракций бензина, а также выделением из продуктов окисления твердого парафина. В результате развития синтетических методов производства уксусной кислоты удельный вес их вырос с 50% в 1963 г. до 70% в 1965 г. и до 90% в 1970 г. За эти же годы общий объем производства уксусной кислоты в стране вырос в три раза. [c.312]

    Для введения в молекулу 2-нафтола одной сульфогруппы хлорсульфоновая кислота как сульфирующий агент сходна с серной при комнатной температуре [651а, 655] она дает 1-сульфокислоту, а при 130° в тетрахлорэтановом растворе [655а] — 6-изомер. В том же растворителе с серным ангидридом [656] в присутствии борной кислоты образуется 1-сульфокислота. Запатентовано [657] также применение для этой реакции нитробензола в качестве растворителя при температуре ниже 16°. При выборе [658] различных технических методов производства 1-сульфокислоты предпочтение отдают сульфированию серной кислотой, и удалению продукта из реакционной зоны путем кристаллизации. При этом достигается выход сульфокислоты в 80% [659]. [c.102]

    Как показано на стр. 349, пиролизом этилендиацетата можно получать также винилацетат. В пpoмышлeн юм методе производства винилацетата пиролизом этилидендиацетата последний получают из уксусной кислоты и ацетальдегида. [c.337]

    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]

    Казалось, что в условиях высокой эффективности 3-пиколина как сырья для производства витамина РР следовало на нем базировать промышленное производство. К сожалению, источники сырья для его получения (пиколиновая фракция каменноугольной смолы) весьма ограничены. Кроме того, 13-пиколин (температура кипения 143° С) в них содержится вместе с -пиколином (144° С) и 2,6-лутидином (142° С) в соотношении (приблизительно) 3 2 5. Для очистки 3-пиколина применяют различные химические реакции, в которые вступают примеси, а 3-пиколин не вступает. К этим реакциям относятся конденсация с формальдегидом [56, 57], с фталевым ангидридом [56, 58, 59], с фталевым и уксусным ангидридом [60], с мочевиной [61 ], с бензойной кислотой [62], с муравьиной кислотой [63]. Применяется также метод очистки пиколиновой смеси от 2,6-лутидина путем связывания 3-пиколина с хлористым цинком в комплексную соль с последующим разложением ее щелочью по следующей схеме  [c.189]

    Образующийся в результате нейтрализации сульфат кальция (гипс) кристаллизуется из разбавленных растворов в виде Са504-2Н20. Растворимость этой соли при температуре О—40 °С колеблется от 1,76 до 2,11 г/л. При более высокой концентрации сульфат кальция выпадает в осадок, поэтому при нейтрализации сильных кислот, кальциевые соли которых труднорастворимы в воде, необходимо устраивать отстойники-шламонакопители. Существенным недостатком метода нейтрализации серной кислоты известью является также образование пересыщенного раствора гипса (коэффициент пересыщения может достигать 4—6), выделение которого из сточной воды может продолжаться несколько суток, что приводит к зарастанию трубопроводов и аппаратуры. Присутствие в сточных водах многих химических производств высокомолекулярных органических соединении усиливает устойчивость пересыщенных растворов гипса, поскольку эти соединения сорбируются на гранях кристаллов сульфата кальция и препятствуют их дальнейшему росту. [c.105]

    В 1949 г. Чайкин и Брауи [2] сообщили, что этот гидрид в водном или спиртовом растворе является исключительно эффективным и избирательным реагентом для восстановления альдегидов, кетонов и хлорангидридов кислот, содержащих также и другие группы, способные к восстановлению. В 1953 г. Шлезингер, Браун и др. [31 в серии работ описали детальную методику получения и химические свойства гидридов щелочных металлов и диборана, а в другой работе [4] сообщили о применении Н. б. в качестве восстановителя и источника водорода. В 1950 г. был взят патент и начато промышленное производство боргидридов. В течение последующих нескольких лет были усовершенствованы методы производства боргидридов, и они нашли новые области применепия, иапример в текстильной, целлюлозной и бумажной промышленности, в нефтехимии. [c.381]

    При переработке кубовых остатков в этилацетатном производстве можно получать 93—94 %-ный этилпропионат с выходом до 3%, в бутилацетатном производстве — смесь высших эфиров, используемых для выработки растворителя БЭФ Эфиры высших гомологов уксусной кислоты могут также служить сырьем для получения пропионовой, масляной и других кислот методом каталитической переэтерификации Хвостовые погоны бутилацетатного производства после вакуум дистилляции смешивают с головными фракциями от стадии этерификации в соотношении 1 2, нейтрализуют, пропускают через осушительные фильтры с хлористым натрием и хлористым кальцием и получают растворитель БЭФ Смесь бутилацетата, толуола, бутанола и этанола в соотношении 32 15 30 23 представляет собой ацетатный мебельный растворитель АМР-3 В ограниченных количествах выпускаются и другие композиционные растворители, например АМР ЗМ, 664, содержащие формиаты и эфиры высших гомологов уксусной кислоты [c.141]

    Биотехнология. Микробиологический синтез. Кормовые добавки. В связи с начавшимся широким использованием аминокислот (особенно незаменимых , см. раздел 10] в качестве добавок в корма сельскохозяйственных животных и птицы промышленность использует теперь, кроме химических методов синтеза, также и биотехнологические приемы. Уже освоены производства глутаминовой и аспарагиновой кислот, треонина, аланина, триптофана, метионина и лизина с использованием в качестве сырья крахмала, мелассы и патоки. С той же целью уже реализовано производство микробиальной биомассы из гидролизата кератинсодержащего сырья (рога, копыта, перо). [c.488]

    Производство современных неионогенных, анионоактивных и катионоактивных поверхностно-активных и йоющих средств бази-руч ся на использований широкого ассортимента нефтехимического и природного сырья, важной составной частью которого являются фракции высокомолекулярных парафиновых и олефиновых углеводородов. Так, для ползгчения синтетических жирных,кислот методом окисления в жидкой. фазе обычно используют нефгяной очищенный белый парафин с температурой плавления от 52 до 54 °С, выкипающий в пределах 340—470 °С. Для целенаправленного синтеза с максимальным выходом кислот g—оптимальным сырьем является жидкий парафин, выкипающий в пределах 250—350 °С и содержащий к-царафины С в— jo, для синтеза кислот С —— среднеплавкий, выкипающий в пределах 300—430 °С (к-парафины i7 — as), и кислот jg— j3 — твердый, выкипающий в пределах 420—500 °С (w-парафины j, — gg) [17 1. Для получения алкилсульфонатов методом сульфохлорирования используют жидкий парафин, выкипающий в пределах 220—320 °С (к-парафины i4- ie) [18] вторичные алкилсульфаты производят путем сульфирования фракции а-олефинов ( g— jg), полученной в свою очередь в результате термического крекинга твердого парафина с температурой плавления 52—60 °С [19 ]. На основе высокомолекулярных олефинов получают также различные полупродукты для производства поверхностно-активных и моющих средств — алкилпроизводные ароматических углеводородов и фенола, спирты, гликоли и др. [6, 19]. [c.14]

    Основные научные работы в области органического синтеза. Разработал (1923) метод производства катализатора на основе двуокиси платины, применяемого для гидрирования ненасыщенных органических соединений при невысоких температурах и давлениях (катализатор Адамса). Усовершенствовал (1923) реакцию Гат-термана, заменив цианистый водород и галогенид металла цианидом цинка. Установил структуру гидрокарповой и хаульмугровой кислот (1925), а также госсипола (1938)—токсичного желтого пигмента хлопковых семян. Синтезировал и доказал (1931) строение полипоровой кислоты, содержащейся в паразитирующих грибах. Исследовал природу физиологической активности марихуаны и разработал методы синтеза ее аналогов, обладающих наркотическим действием. Изучал токсичные алкалоиды растений шт. Техас, производные аитрахинона, мышьяксодержащие органические соединения. Синтезировал ряд анестезирующих веществ местного действия. Во время первой мировой войны разработал метод получения соединения, раздражающего верхние дыхательные пути (адамсит). Оно было предложено в качестве отравляющего вещества, но не нашло практического применения. [c.12]

    Основные научные работы посвящены синтетической органической химии. Совместно с американским химиком У. Бахманом предложил (1941) новый промышленный метод производства важного взрывчатого вещества — циклотрн-метилентринитрамина (циклонита). Разработал (1955—1958) широко используемый карбодиимидный метод синтеза пептидов. Предложил (1962) применять основания Шиффа в качестве защитных производных в пептидном синтезе. Осуществил (1957) синтез пенициллина с выходом на последней стадии 12%. Исследовал структуру ряда антибиотиков, в частности этами-цина, терроевой кислоты (1958), теломицина (1963), а также при- [c.574]

    Если кислота, выделяющаяся на катионите в Н-форме, очень летуча, то она может частично теряться. В этом случае анализ усложняется. Важным примером, заслуживающим специального рассмотрения, являются растворы сульфитов и бисульфитов. Возникающие нри анализе этих растворов трудности могут быть преодолены двумя способами. Один из них, связанный с применением анионитов, рассматривается на стр. 238. Другая возможность состоит в применении косвеипого метода, иредложенного Самуэльсоном [87 ] для определения кальция в варочной кислоте целлюлозного производства. Этот метод уже много лет нрименяется на практике он может быть использован также для определения натрия в некоторых продуктах гидро--лиза целлюлозы. [c.232]

    Реакция перекиси водорода с простейшими карбоновыми кислотами часто применяется в качестве метода препаративного получения пероксокислот [292]. Возможно и дальнейшее окисление, причем кислоты с более длинной цепью менее чувствительны к такому окислению. При окислении двуосновой кислоты (щавелевой) кислая среда способствует протеканию окисления до двуокиси углерода, а основная среда тормозит это окисление [293]. Аналогичное поведение наблюдается у мезоксалевой кислоты [294]. Наличие гидроксильных групп повышает скорость окисления, например в ряду кислот янтарная, яблочная и винная [295]. Исследованы также непредельные фумаровая и маленновая кислоты [296]. Окисление малеинового ангидрида перекисью водорода предложено в качестве метода производства винной кислоты [297]. Изучены реакции перекиси водорода с кетокислотами, например с глиокси-ловой и ацетоуксусной [298] рассмотрены механизмы, которые в состоянии объяснить наблюдаемый основной катализ при этой реакции [299]. Исследованы реакции перекиси водорода с дикарбонильным соединением—глиок-салем [300], с родственной ему гликолевой кислотой [301], стрикетонами [302] и другими кетонами [303]. [c.343]

    Особенно примечательной в этом отношении представляется работа Снорека и Дании (1962), посвященная быстрому и простому методу превращения алкоксильных групп в соответствующие алкилиодиды с последующим их газохроматографическим определением. Навеску пробы, предназначенной для исследования, кипятят 15 мин в колбе с иодистоводородной кислотой. После экстракции реакционной смеси четыреххлористым углеродом можно определять алкилиодиды прямо в растворе методом газовой хроматографии. Общая продолжительность анализа составляет всего 30 мин. В противоположность этому при анализе по методу Цейзеля требуется гораздо больше времени и нужна сравнительно более сложная аппаратура для адсорбции или выделения алкилиодидов. Этот метод, пригодный также для идентификации спиртов в водных растворах, был успешно применен авторами для определения алкоксильных групп в лигнине, древесине, продуктах бумажного производства, волокнах и для идентификации спиртов. Аналогичное определению алкоксильных групп по Цейзелю определение ацильных групп (т. е. титрование кислот, образующихся при омылении) также не позволяет выяснить химическую структуру ацильных групп. Между тем газохроматографический анализ образующихся кислот дает возможность качественного и количественного определения ацильных групп (Шнннглер и Маркерт, [c.254]

    На каталитических реакциях основываются современные методы производства водорода конверсией природного газа и других углеводородов, а также окиси углерода с водяным наром. Многотоипажиое производство азотной кислоты осуш,ествляется путем каталитического окисления аммиака па платиновых сетках. Каталитические методы занимают господствующее положение в нефтепереработке и нефтехимическом синтезе. Сотни миллионов тонн высококачествениого моторного топлива производятся с помощью каталитических реакций крекинга, гидрокрекинга, ри-форминга, циклизации и изомеризации углеводородов. Каталитические методы широко используются для получения органических растворителей, ароматических углеводородов, мономеров для производства синтетических каучуков, синтетических волокон и других полимерных материалов, а так-5ке в процессах полимеризации. [c.60]


Смотреть страницы где упоминается термин Кислота методы производства также: [c.254]    [c.134]    [c.58]    [c.134]    [c.13]    [c.35]    [c.446]    [c.140]    [c.822]    [c.129]    [c.486]    [c.344]   
Технология экстракционной фосфорной кислоты (1972) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота методы

Производство методы



© 2024 chem21.info Реклама на сайте