Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гемоглобин при серповидноклеточной анемии

    Гемоглобин больных серповидноклеточной анемией имеет измененную аминокислотную последовательность [c.216]

    Аномальный гемоглобин в эритроцитах больных серповидноклеточной анемией и является причиной этого очень серьезного заболевания. Экспериментально установлено, что у родителей человека, страдающего этой болезнью, в эритроцитах присутствует смесь 50% гемоглобина А и 50% гемоглобина S. В среднем четвертая часть потомства от таких браков будет гомозиготной по мутантному гену, определяющему синтез аномального гемоглобина (генотип SS), и будет страдать [c.453]


    Расположение, или последовательность, аминокислот вдоль белковой цепи определяет первичную структуру белка. Первичная структура ответственна за неповторимую индивидуальность белка. Замена хотя бы одной аминокислоты может привести к изменению биохимических свойств белка. Например, серповидноклеточная анемия представляет собой генетическое (наследственное) заболевание, вызываемое единственной ошибкой в построении белковой цепи гемоглобина. Эта белковая цепь содержит 146 аминокислот. Первые семь аминокислот в нормальной цепи-валин, гистидин, лейцин, треонин, пролин, глутаминовая кислота и снова глутаминовая кислота. У человека, страдающего серповидноклеточной анемией, шестая аминокислота в этой цепи-валин, а не глутаминовая кислота. Замещение всего одной аминокислоты с кислотной функциональной группой в боковой цепи на аминокислоту с углеводородной боковой цепью настолько изменяет растворимость гемоглобина, что в конечном итоге приводит к нарушению нормального кровообращения (см. также разд. 12.8, ч. 1). [c.448]

    Конечно, не могут быть нейтральными мутации, резко изменяющие характер остатка, скажем, замена кислотного остатка 6 Глу на нейтральный Вал в -цепи человеческого гемоглобина, что приводит к серповидноклеточной анемии. [c.560]

    СЕРПОВИДНОКЛЕТОЧНАЯ АНЕМИЯ, ВЫЗЫВАЕМАЯ ИЗМЕНЕНИЕМ КОДОНА. Теперь мы можем перевести термин мутация на молекулярный язык. Любое изменение в кодоне приведет к мутации, причем многие мутации гибельны для организма. Лучше всего изучены мутации которые вызывают изменение структуры гемоглобина. [c.489]

    В чем причина высокой частоты встречаемости серповидноклеточного гена (известно, что его носителями являются примерно 3 млн. американцев) Тот факт, что этот ген выжил и встречается чаще всего среди африканского населения, можно объяснить, по-видимому, тем, что наряду с вредным воздействием он оказывал также и определенное положительное влияние. Дело в том, что возбудитель малярии, являвшийся во все времена причиной высокой смертности людей, часть своего жизненного цикла проводит в эритроцитах (рис. 1-7). Прп этом оказалось, что в эритроцитах, которые наряду с гемоглобином А содержали гемоглобин S, условия для роста возбудителя малярии менее благоприятны, чем в клетках, содержащих только гемоглобин А. Благодаря этому гетерозиготные носители гена серповидноклеточности выживали при эпидемиях малярии, однако давалось это дорогой ценой — одна четверть их потомства погибала от серповидноклеточной анемии. [c.315]

    Серповидноклеточная анемия— молекулярная болезнь гемоглобина. .......... [c.363]


    При некоторых редко встречающихся в СССР заболеваниях системы крови (серповидноклеточная анемия, талассемия, средиземноморская анемия и др.) были обнаружены также особые патологические формы гемоглобина, получившие названия гемоглобинов S, С, D, Е и другие, число которых превышает 15. [c.474]

    Ген, нередко встречающийся у лиц африканского происхождения, вызывает (в случае гомозиготности) тяжелое, часто летальное заболевание, получившее название серповидноклеточная анемия . В 1949 г. Полинг и Итано с сотрудниками обнаружили, что гемоглобин больных серповидноклеточной анемией имеет необычно высокую электрофоретическую подвижностьб. Позднее, в 1957 г., Ингрем разработал метод пептидных карт (гл. 2, разд. 3.2, рис. 4-20) и применил его для исследования гемоглобина. Он расщепил молекулу гемоглобина трипсином на 15 пептидов и разделил полученную смесь с помощью электрофореза и хроматографии. Ему удалось показать, что аномалия, характерная для серповидноклеточного гемоглобина (гемоглобина 5), локализована в Р-цепи (в шестом положении) (рис. 4-17). Глутаминовая кислота, находящаяся в этом положении в нормальном гемоглобине, оказалась замещенной в гемоглобине 5 на валин. Это [c.314]

    Отличие в единственном основании в молекуле ДНК или единичная ошибка в считывании кода вызывает изменение в последовательности аминокислотных остатков. Тот микроскопический дефект в молекуле гемоглобина, который является причиной серповидноклеточной анемии (стр. 1055), был прослежен до единичного гена — участка цепи ДНК, в котором, по-видимому, произошла замена кодона ТЦА на АЦА. Имеются данные в пользу того, что антибиотики способны, изменяя рибосому, вызывать ошибки в считывании кода, которые могут привести к гибели организма. [c.1065]

    В 1902 г. английский врач А. Е. Гаррод (1857—1936) исследовал вольных, у которых моча темнела при стоянии на воздухе, и обнаружил, что изменение цвета вызвано присутствием в моче гомогентизино-вой кислоты, или 2,5-диоксифенилуксусной кислоты. Он описал это явление как врожденную ошибку обмена веществ . Позднее было установлено, что это результат генетической мутации фермент, который превращает гомогентизиновую кислоту в теле здорового человека в другие вещества, у больных или не синтезируется совсем или, возможно, синтезируется в измененной форме, не обладающей каталитической активностью. В 1949 г. была открыта причина другой генетической болезни— серповидноклеточной анемии, которая обусловлена присутствием в организме мутантного гена, детерминирующего синтез аномальной полипептидной цепи гемоглобина. В -цепи молекулы гемоглобина у больных серповидноклеточной анемией происходит замена одного аминокислотного остатка глутаминовой кислоты на валин, что уже было описано в разд. 15.6. Поскольку появление аномальных молекул гемоглобина влечет за собой болезнь, серповидноклеточная анемия была названа молекулярной болезнью. С 1949 г. обнаружены сотни молекулярных болезней. Для многих из них установлена природа генной мутации и соответствующее изменение в структуре молекулы белка, зависимого от мутировавшего гена. Для ряда таких болезней обнаружение нарушения на молекулярном уровне позволило практически полностью объяснить симптомы заболевания. [c.467]

    Серповидноклеточная анемия молекулярная болезнь гемоглобина [c.215]

    Поэтому на основании результатов измерения макроскопической вязкости можно ожидать, что агрегированные молекулы гемоглобина больных серповидноклеточной анемией будут иметь сферическую форму [16], но по результатам исследования ЯМР-д агрегаты не должны быть слишком большими. [c.181]

    Изящный пример зависящего от давления фазового перехода в макромолекулярной системе (который может служить моделью аналогичных эффектов при воздействии давления на субклеточные молекулярные структуры) мы находим при изучении аномального гемоглобина 5, содержащегося в крови больных серповидноклеточной анемией. В молекуле НЬ5 остаток глута- [c.322]

    Серповидноклеточная анемия есть болезнь не только человека, не только эритроцита, но и гемоглобина. Это болезнь молекулы. И сводится она к опечатке в белковом тексте. [c.221]

    Молекулярные болезни — заболевания, вызываемые наследственными ошибками в нуклеотидном коде ДНК. Примером таких заболеваний служит серповидноклеточная анемия. При этом заболевании в части цепи ядерной ДНК, контролирующей образование гемоглобина, наступает совсем незначительное наследственное изменение  [c.60]

    Взаимосвязь между генами и молекулами белка можно проследить на примере разных форм гемоглобина, обнаруженных в эритроцитах человека. В 1949 г. было установлено, что у некоторых людей, страдающих серповидноклеточной анемией, эритроцит содержит форму гемоглобина (гемоглобин S), которая отличается от гемоглобина эритроцитов большинства людей (гемоглобин А). Различие этих форм невелико две а-цепи молекулы гемоглобина S идентичны а-цепям молекулы гемоглобина А, а -цепи различаются одним аминокислотным остатком. -Цепь гемоглобина А имеет в шестом положении, считая от ЫНа-конца полипептидной цепи, остаток глутаминовой кислоты, в то время как -цепь гемоглобина S имеет в этом положении остаток валина все другие остатки аминокислот те же, что и в гемоглобине А. [c.453]


    У человека было обнаружено свыше 50 аномальных разновидностей гемоглобина. В одной из них остаток глутаминовой кислоты в каждой из р-цепей замеш ен остатком валина. Столь ничтожное, казалось бы, изменение снижает ионный заряд молекулы и степень диссоциации между гемом и глобином. Пониженная полярность облегчает, по-видимому, кристаллизацию несимметричных молекул гемоглобина, не содержащих кислород, заставляя эритроциты принимать несвойственную им форму. Такие эритроциты быстро разрушаются селезенкой, что приводит к гемолитической анемии. Эта молекулярная болезнь (термин введен Л. Полингом) известна под названием серповидноклеточной анемии. [c.493]

    Гемоглобин человека, страдающего серповидноклеточной анемией val-his-leu-thгeo-pГo-l aZ-glu-lys [c.494]

    Чел1у равно наименьшее число нуклеотидов, которые должны быть изменены или неправильно считаны для того, чтобы вместо обычного гемоглобина (НЬА) образовался глобин, характерный для серповидноклеточной анемии (НЬЗ)  [c.495]

    Различают нарушения О.в., вызываемые прямым влиянием на него неблагоприятных факторов (недостаток юш несбалансированность орг. и минер, субстратов О.в., избыточности или недостатка внеш. физ. воздействий-т-ры, света, звука и др.), и нарушения, вызываемые изменениями в наследств, аппарате организма. В соответствии с этим заболевания О.в. у людей подразделяют на болезни недостаточности и врожденные болезни. Напр., к болезням недостаточности относятся алиментарная дистрофия при голодании или недостатке в пище незаменимых аминокислот, авитаминозы (цинга-при недостатке аскорбиновой к-ты, рахит-при недостатке витамина В). К болезням недостаточности более чувствительны организмы в стадш роста и развития. Примеры врожденных болезней-алкаптонурия, связанная с недостаточной активностью ферментов, расщепляющих гомогентезиновую к-ту, и серповидноклеточная анемия (см. Гемоглобин). [c.318]

    Гемоглобин — основной компонент эритроцитов (красных кровяных шариков)—представляет собой белок молекулярного веса около 68 ООО. На примере гемоглобина легко проиллюстрировать важную роль состава и структуры белка для его функции. Так, при незначительном изменении аминокислотного состава гемоглобина (замещение глутаминовой кислоты на валин) свойства этого белка резко нарушаются такой аномальный гемоглобин обусловливает развитие тяжелого наследственного заболевания—серповидноклеточной анемии. [c.483]

    РИС. 4-19 В. Карта электронной плотности дезоксигемоглобина человека, построенная по рентгеноструктурным данным разрешение 0,35 нм. Контурные линии указывают области высокой электронной плотности в отдельных участках молекулы гемоглобина. На этой карте показано сечение, сделанное в основном по Р-субъединицам перпендикулярно оси симметрии 2-го порядка на уровне остатка глутаминовой кислоты в 6-м положении, т. е. в Месте, по которому происходит замещение в молекуле гемоглобина при серповидноклеточной анемии. Видны части спиралей А, Е и Р, а также остатки УаМ, С1и-6, Ьу8-82 и Н15-143. Максимум, обозначенный через Х , соответствует неорганическому аииону, вероятно сульфату [c.310]

    ЧТО замена того же остатка глутаминовой кислоты на остаток лизина дает гемоглобин С, наличие которого не связано с такими серьезными патологическими нарушениями, как при серповидноклеточной анемии. Ряд других замен, которые удалось выявить и идентифицировать, приведен на рис. 4-17. [c.317]

    Боковые группы влияют на свойства белков не только вследствие их кислых или основных свойств большую роль играют также другие свойства этих групп, а также размер и форма. Например, постоянная волнистость волос зависит от изменений в дисульфидных (—8- —)поперечных связях из-за наличия цистеиновых боковых цепей основное различие между шелком и шерстью обусловлено различием в небольших боковых группах (в фиброине шелка преобладают Н- и СНд-группы) прочность сухожилия связана с плоским строением пирролидинового цикла и способностью ОН-группы оксипро-лина к образованию водородных связей. Замена одной глутаминовой боковой цепи в молекуле гемоглобина (всего содержится 300 боковых цепочек) на цепь, валина является, по-видимому, причиной заболевания серповидноклеточной анемией, приводящей к смертельным исходам. [c.1055]

    Известен ряд наследственных заболеваний крови — анемий. При так называемой серповидноклеточной анемии, распространенной в некоторых районах Африки, Юго-Восточной Азии, Средиземноморья, эритроциты имеют форму серпов. В этом случае гемоглобин (5-гемоглобин, в отличие от нормального А-гемогло-бина) имеет кристаллоподобную структуру, эритроциты слипаются и подвергаются гемолизу — распаду. Тяжелые нарушения кровообращения, вызванные этим заболеванием, зачастую приводят к смерти в раннем возрасте. Средиземноморская анемия (Т-гемоглобин) выражается в распаде эритроцитов, малокровии, компенсаторном разрастании кроветворной ткани костного мозга, вызывающем скелетные деформации, в увеличении печени и селезенки. Другие анемии также весьма опасны. Эти заболевания наследуются рецессивно в соответствии с законом Менделя. Иными словами, анемия резко проявляется у гомозиготных, но неу гетерозиготных особей. Поддержание высокого уровня 5А-гетерозигот в названных районах оказалось связанным с распространением в них малярии. Малярия является в этих районах одной из главных причин смертности. 5А-гетерозиготы [c.76]

    Мы рассмотрели самосборку вирусов, где жизненно важным является объединение белковых субъединиц в надмолекулярную структуру (икосаэдр, спираль). Интересно упомянуть о ситуации, когда самосборка белковых единиц в подобную структуру оказывается опасной для жизни. Таким случаем является известная наследственная болезнь - серповидно клеточная анемия, встречающаяся примерно в одном случае на 1(К)00 человек. Гемоглобин в здоровой клетке существует в виде тетрамеров, состоящих из двух идентичных а-цепей и двух идентичных 3-цецей. У больных серповидноклеточной анемией гемоглобин (называемый гемоглобином S в отличие от обычного гемоглобина А) отличается от нормального гемоглобина единственным аминокислотным остатком а-цепи этих двух гемоглобинов одинаковы, а в )3 цепи в гемоглобине S нормальный шестой (начиная с А -конца) аминокислотный остаток — глютаминовая кислота — замещен валином. В отличие от глютаминовой кислоты, в которой имеется кислая A-rpynna A-группа валина является нейтральной. В настоящее время считается, что валин [c.95]

    Эти пептиды конкурируют с окрестностью /3-цепи вблизи валина-6 при связывании с участком соседнего тетрамера, прилежащим к фенилаланину-85 или лейцину-88, и в результате волокна из тетрамеров гемоглобина 8 не образуются. Наконец, авторами обзора [8] в качестве лекарства от серповидноклеточной анемии предложены бисалициллаты, которые при соединении с тетрамером гемоглобина 8 искажают его форму и, затрудняя слипание соседних тетрамеров, устраняют образование нитей гемоглобина 8. При этом серповидные эритроциты, которые у больных серповидноклеточной анемией забивают капилляры и затрудняют перенос кислорода, уже не возникают. [c.97]

    У людей, страдающих серповидноклеточной анемией, ген, ответственный за синтез Р-цепи гемоглобина, вследствие необратимой мутации кодирует включение остатка валина в положение, где в нормальном гемоглобине находится остаток глутаминовой кислоты при этом все остальные аминокислоты Р-цепи занимают свои обычные положения. Серповидноклеточный гемоглобин-это результат только одной из более 300 различных мутаций, обнаруженных в гемоглобинов ьк генах человека, причем в большинстве случаев такие мутации приводят к замене какой-нибудь одной аминокислоты в а- или Р-цепи гемоглобина (рис. 8-23 табл. 8-4). Многие из этих мутаций бьши выявлены при помощи электрофоретических тестов, а также из анализа пептидных карт гемоглобина, вьщеленного из крови больных, у которых эритроциты имели те или иные отклонения от нормы. [c.219]

    О2, СО2, ионами Н и ДФГ, а также изменениями в четвертичной структуре гемоглобина в цикле оксигенация-де-зоксигенация. Таким образом, субъединицы гемоглобина, подобно субъединицам других олигомерных белков, способны передавать сигналы о регуляторных взаимодействиях посредством конформациопных изменений молекулы белка. Изменения в аминокислотной последовательности глобулярных белков, обусловленные генными мутациями, например замена двух аминокислотных остатков в молекуле гемоглобина при серповидноклеточной анемии, могут вызвать значительные изменения конформации белка и, следовательно, сказаться на его биологических функциях. [c.222]

    Особенно хорошо изучен в настоящее время патологический HbS, входящий в состав эритроцитов при так называемой серповидноклеточной анемии — заболевании, распространенном в малярийном поясе тропических стран. HbS благодаря своей плохой растворимости легко вьшадает в осадок в содержимом эритроцита и, деформируя красную кровяную клетку, придает ей характерную серповидную форму. HbS обладает меньшим сродством к кислороду, чем и объясняется при замещении им большого количества НЬА возникновение у людей анемии. В то же время следует заметить, что люди, в крови которых содержится HbS, невосприимчивы к малярии. HbS отличается от обычного НЬА (А — adultus, взрослый) по своей электрофоретической подвижности и по аминокислотному составу, причем изменение аминокислотного состава касается только двух остатков глютаминовой кислоты примерно из 600 аминокислот, входящих в состав молекулы гемоглобина. В HbS в двух полипептидных цепочках Р (стр. 64—65) вместо остатка глютаминовой кислоты находится валин. Ниже приводится строение фрагмента полипептидной цепочки гемоглобина А и соответствующего фрагмента этой же цепочки гемоглобина S  [c.474]

    В гл. 1П указывалось, что первичная структура некоторых полипептид-ных гормонов (в частности, вазопрессина и меланоцитстимулирующего гормона) у разных биологических видов не вполне одинакова. Такая же видовая специфичность наблюдается и у белков. Сэнгер и его сотрудники, работая с препаратами инсулина, выделенными от разных видов млекопитающих, во всех случаях обнаружили те или иные вариации либо в А-цепи (на участке, ограниченном дисульфидным мостиком), либо в В-цепи (на ее карбоксильном конце). В препаратах цитохрома с, выделенных от разных видов, также были обнаружены индивидуальные различия, определяющиеся природой аминокислот в ключевом пептидном сегменте. Помимо этих вариаций, обусловленных видовой специфичностью, встречаются также и различия в белках одного и того же вида, возникшие в результате мутаций. Большинство сведений о влиянии мутаций на структуру белка почерпнуто нами из прекрасных работ Ингрэма. Ингрэм и его сотрудники показали, что нормальный гемоглобин взрослого человека и гемоглобин больных таким наследственным заболеванием, как серповидноклеточная анемия, отличаются только тем, что в определенном положении р-цепи остаток глутаминовой кислоты в аномальном гемоглобине заменен валином. (Напомним, что молекула гемоглобина состоит из двух пар идентичных цепей а- и Р-цепей в гемоглобине взрослого человека или а- и у-цепей в гемоглобине плода.) [c.96]

    В гл. IV было отлючено, что гемоглобин больных серповидноклеточной анемией отличается по своей структуре от гемоглобипа здоровых людей. Серповидноклеточная анемия, сопровождающаяся изменением гемоглобина,— наследственное заболевание это означает, что генетическая информация, передаваемая от родителей потомству, не содержит в этом случае правильных указаний, которые обеспечивали бы синтез нормальных молекул гемоглобина (см. обсуждение генетических проблем в гл. XIX). Заболевание это — одно из тех, которые объединяются под общим названием врожденных нарушений обмена. Эту группу заболеваний выделил много лет назад Гэррод. Он рассматривал, например, цистинурию, алкаптонурию и альбинизм как результат неспособности организма осуществлять определенные метаболические превращения в их нормальной последовательности. Это представление полностью подтвердилось в результате дальнейших исследований. [c.453]

    В 1949 г. Полинг, Итано, Сэнгер и Уэллс обнаружили, что гемоглобин больных серповидноклеточной анемией, НЬ5, отличается по своей электрофоретической подвижности от нормального гемоглобина человека, НЬА. Э то исследование, в котором было обнаружено различие зарядов двух форм молекул гемоглобина, положило начало изучению молекулярных болезней крови. Генетики установили, что серповидноклеточная анемия наследуется по простым менделевским законам. Ген НЬ5 аллелей гену НЬА, т. е. расположен в том же локусе. Индивидуумы, гомозиготные по гену НЬЗ, обычно умирают в раннем возрасте. В их крови часто сохраняется значительное количество гемоглобина плода. У индивидуумов, гетерозиготных по этому гену, содержится примерно 40% НЬ5. Такие индивидуумы испытывают неприятные ощущения после физической нагрузки и во время -тгребывани в самолетах, не, оборудов11нных устанрБ ками для поддержания нормального атмосферного давления. В окисленной форме гемоглобины НЬА и НЬЗ нельзя различить никакими [c.222]

    Точно так же как хлороглобин зеленых растений может изменяться различным образом в результате мутации, так и вещество, придающее крови красный цвет, может встречаться в различных формах. У людей, страдающих так называемой серповидноклеточной анемией, гемоглобин значительной части эритроцитов имеет измененный состав, вследствие чего эти клетки плохо функционируют и имеют серповидную форму. В результате развивается сильная анемия, обычно со смертельным исходом. [c.441]

    Образование коацерватов РЮР-9 относится к той группе процессов, которые стимулируются высокими температурами (при низкой температуре существует только одна фаза). Примерами подобных процессов являются полимеризация белков вируса табачной мозаики или гемоглобина, пораженного серповидноклеточной анемией, деление оплодотворенного яйца, преципитация поли-Ь-пролина выше 25 °С и другие. Лауффер [66] относит эти явления к разряду процессов переноса энтропии , предполагая, что их движущей силой является возрастание энтропии воды. Усиление гидрофобных взаимодействий также способствует протеканию этих процессов. [c.73]

    Данные, приведенные на рис. 9.7 и 9.8, были одними из первых [12], которые указали на различие в поведении нормального гемоглобина взрослого человека и гемоглобина больных серповидноклеточной анемией. Ранее было установлено лишь различие в величине предела растворимости [23]. Как отмечалось [16], даже зависимость макроскопических вязкостей от концентрации оказалась у этих двух гемоглобинов одинаковой. В противоположность этому микроскопические вязкости, как это следует из данных по ЯМР-д, не совпадают, что в самом деле может указывать на образование тетрамерами гемоглобина больных серповидноклеточной анемией более крупных агрегатов, состоящих из 2—4 молекул тетрамера. Этот вывод подтверждается опытами с карбоксигемоглобином, полученным от больных серповидноклеточной анемией и содержащим введенную спиновую метку [24]. Возникает вопрос о причинах фундаментальных различий между макроскопической и микроскопической вязкостью, в результате которых первая нечувствительна к агрегации, а последняя зависит от нее. [c.179]

    Взаимосвязь между генами и молекулами белка можно проследить на примере различных видов гемоглобина, обнаруженного в эритроцитах человека. В 1949 г. было открыто, что у некоторых людей, страдаюш их серповидноклеточной анемией, эритроциты содержат гемоглобин такого вида (гемоглобин S), который отличается от гемоглобина эритроцитов большинства людей (гемоглобина А). Различие этих форм гемоглобина небольшое две альфа-цепи молекулы гемоглобина S идентичны альфа-цепям молекулы гемоглобина А, а каждая бета-цепь имеет один отличающийся аминокислотный остаток. Бета-цепь гемоглобина А имеет остаток глутаминовой кислоты в шестом положении от свободного амино-конца (см. последовательность на стр. 681), в то время как бета-цепь гемоглобина [c.685]


Смотреть страницы где упоминается термин Гемоглобин при серповидноклеточной анемии: [c.454]    [c.154]    [c.316]    [c.195]    [c.96]    [c.220]    [c.357]    [c.342]    [c.283]    [c.171]    [c.172]   
Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Анемия

Гемоглобин



© 2025 chem21.info Реклама на сайте