Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Паста металлов

    На очищаемые поверхности деталей пасту наносят кистью или шпателем, а при больших размерах поверхностей — растворо-насосом. Толщина слоя пасты 2—5 мм, время выдержки пасты на детали 15—60 мин. В этом случае гарантируется снятие слоя ржавчины толщиной до 1 мм. Если слой ржавчины большей толщины, увеличивают время выдержки пасты на детали или наносят пасту повторно. После удаления пасты поверхность обильно промывают водой или насухо протирают ветошью, а затем — 10%-ным раствором соли Мажеф или 10%-ным раствором ортофосфорной кислоты. На очищенной поверхности металла образуется пленка, защищающая металл от окисления на 1—2 суток. Кроме того, пленка улучшает адгезию лакокрасочных покрытий с поверхностью и удлиняет срок их службы. [c.74]


    При обработке металлов широко применяют эмульсии эмульсолов и паст, изготовленных из минеральных масел и отходов их очистки. [c.246]

    В большинстве случаев сырой продукт представляет собой вязкую жидкость или пасту, содержащую сульфат натрия. При смешении с неорганическими или органическими ингредиентами, например сульфатами, карбонатами, силикатами или фосфатами щелочных металлов, коллоидными соединениями (карбоксиметилцеллюлозой), моющие и смачивающие свойства поверхностно-активных веществ улучшаются. [c.343]

    Хорошо зарекомендовали себя высокомолекулярные полиизобутилены как составные части клеев, паст и связующих. Клеи на основе полиизобутилена применяются для склеивания дерева, металла, стекла, тканей, бумаги, пленок, кожи. [c.340]

    Технология приготовления электролита и пасты несложна. Исходные соли должны быть достаточно чистыми. Особенно нежелательным является присутствие в них металлов (Си, РЬ, Ре, Аз, N1 [c.35]

    Описаны также способы получения металлических порошков, основанные на электрохимическом восстановлении окислов и труднорастворимых соединений металлов, которые в виде пасты наносят на поверхность катода (В. П. Голушко). [c.321]

    Главными преимуш,ествами процесса получения блестящих осадков перед обычным являются экономия цветного металла, устранение трудоемкой, дорогостоящей и вредной механической операции — полировки — и связанных с нею лишних расходов на материалы (круги, полировочные пасты и др.), электроэнергию и рабочую силу и, наконец, возможность ведения непрерывного технологического процесса при нанесении нескольких слоев одного и того же или различных металлов (многослойные покрытия). [c.351]

    Существуют также способы термического восстановления металлов из газообразных соединений (карбонилы, нитрозилы, гидриды и т. д.) и из специальных паст, наносимых на поверхность керамики или стекла с последующим вжиганием. [c.444]

    За результат принимают среднее арифметическое значение из трех измерений. Полученную пористость относят к единице поверхности. Составы паст в зависимости от металла покрытия и основы приведены в табл, 5. [c.275]

    Многие вещества Ф. разрушает (отеке да и название фтор , которое сохрани" лось только в русской терминологии)-Шерсть и резина загораются в атмосфе ре Ф. Большинство металлов реагируют с Ф. при обычной температуре Ре, Си, N1 — устойчивы против действия Ф., благодаря образованию на их поверхности защитной пленки фторида, поэтому Ф. перевозят и хранят в стальных баллонах. Реакции прямого фторирования протекают по цепному механизму и часто легко могут перейти в горение и взрыв. Получают Ф. электролизом расплава кислого трифторида калия КР 2НР. Ф. токсичен, предельно допустимая концентрация его в воздухе 2 10 мг/л. Первая помощь при поражении кожи — обильная промывка водой, затем спиртом и употребление пасты из Mg (0Н)2. Жидкий Ф. применяют как окислитель жид- [c.271]


    Галлий применяют для холодной пайки металлических и керамических изделий. Для этого паста из жидкого галлия и порошкообразного металла наносится на место соединения после затвердевания металлы спаиваются. [c.188]

    Это маслянистые жидкости, термостойкие, водоотталкивающие и обладающие отличными диэлектрическими свойствами. Силиконовые масла применяются, например, как разделяющие вещества для обмазывания форм перед отливкой изделий из каучуковых смесей, металлов или пластмасс, для пропитки материалов с целью придания им гидрофобных свойств и т. д. Они неядовиты и незначительно изменяют свою вязкость при изменении температуры. Силиконовые вазелины или пасты 1— это линейные силиконы с большими относительными молекулярными массами. Они легко прилипают, хорошо растираются, гидрофобны. Поэтому из них изготавливают пасты для мебели и кузовов автомобилей. [c.298]

    В чистом виде ализарин — кристаллы (иглы) красного цвета с темп, плавл. 290" С. Почти не растворяется в воде. Технический продукт — порошок или паста коричневого цвета. Проявляет свойства двухатомного фенола — растворяется в щ,елочах, образуя феноляты. С многовалентными металлами (Са, А1 и др.) образует окрашенные соединения — лаки, применяемые при крашении тканей. Алюминиевый лак (краплак) применяется в полиграфии для изготовления художественных красок. Ализарин является также полупродуктом для синтеза ряда более сложных красителей. [c.408]

    Электроды далеко не всегда представляют собой пластинку металла, погруженную в раствор соли. Иногда вместо раствора соли используют пасту, содержащую необходимую соль (в каломельных электродах) применяют газовые электроды, в которых роль металлической пластинки выполняет адсорбированный па [c.64]

    При оценке защитных свойств катодных покрытий большое значение имеет определение пористости последних. Поры в гальванических покрытиях могут возникать вследствие ряда причин. Так, весьма часто образование пор обусловлено наличием непроводящих участков на поверхности основного металла или подслоя (например пузырьков водорода, частиц полировочной пасты при плохом обезжиривании), или вызвано оседанием шлама в процессе электролиза и т. д. Образование пор может быть связано и с самим процессом электрокристаллизации при определенных условиях. Характерным примером этого может служить осаждение пористого хрома. [c.237]

    Полученной пастой протирают поверхность металла. При хорошем обезжиривании поверхность металла должна полностью смачиваться водой. В противном случае операцию обезжиривания следует повторить. [c.189]

    Расфасованный литий хранят в герметически закрытых стальных коробках под слоем пасты из парафина и минерального масла [14, 78, 112]. Допускается хранение под газолином или петролейным эфиром в заполненных доверху и герметизированных сосудах [19]. Кратковременное хранение предусматривает защиту металла слоем масла (вазелинового, парафинового) или керосина. [c.75]

    Очень интересно применение галлия для холодной пайки керамических и металлических изделий. Этот способ рекомендуется для присоединения тонких проводов в приборах, где нагревание нежелательно. Для этого жидкий галлий смешивают с порошкообразным металлом — медью, никелем, серебром или золотом в соответствуюш,ей пропорции пасту наносят на места соединения. Через несколько часов в результате затвердевания происходит спайка [1], [c.246]

    Для удаления с поверхности черных металлов окалины и ржавчины толщиной до 3 мм используется паста Целлочель . В состав пасты входят соляная кислота, уротропин, жидкое стекло, бумажная масса или мелкие древесные опилки и вода. Соляная кислота, легко растворяя ржавчину, не действует на основной металл благодаря присутствию ингибитора — уротропина. Жидкое стекло и наполнитель служат сгустителями пасты и улучшают ее технологические свойства. Пасту приготовляют, смешивая компоненты в кислостойкой посуде при комнатной температуре. Паста годна к использованию через сутки после приготовления (по внешнему виду и вязкости она напоминает консистентную смазку). [c.74]

    Катализатор, для которого не характерно коксообразо-вание, состоит из 35—40% окислов никеля или кобальта, металлов группы платины (0,01—0,1%) и тугоплавкого носителя. В состав носителя входят тугоплавкие окислы щелочноземельного металла, силикаты или алюмикаты (А1, 51, Т1, 2г, Сг, Мо и др.) и гидравлическое связующее. В носитель введены не связанные с ним окислы щелочного металла и меди (0,1— 10 мас.% в расчете на СиО). Медь вводят в катализатор в качестве промотора. Катализатор получает смешением указанных компонентов в водной среде для образования вязкой пасты с последующим добавлением связующего, формовкой, сушкой и прокаливанием. Щелочные металлы вводят в готовый катализатор погружением его в водный раствор соединений щелочного металла. Таким же образом в катализатор [c.166]


    При сварке ацетилено-кислородным пламенем газовой горелки присадочным материалом служат стержни того же состава, что и металл восстанавливаемой детали, или стержни из силумина (сплав, содержащий 85,5—88% алюминия, 7—9% меди, 5,0—5,5% кремния). Для защиты наплавленного металла от окисления используются в виде порошка или пасты флюсы, содержащие хлористые соединения калия, лития, натрия, бария, а также фтористый натрий, плавиковый шпат и криолит. [c.85]

    Если металлический электрод покрыть слоем малорастворимой соли этого металла и опустить в раствор хорошо растворимой соли, содержащей тот же анион (электрод второго рода), то такой электрод работает обратимо относительно этого аниона. К таким электродам принадлежит, в частности, каломельный электрод (рис. 150). В нем паста из ртути и каломели (Hg2 l2) помещена [c.434]

    В процессе производства на поверхности узлов и деталей образуются различные загрязнения. Причины этого многообразны окисление поверхности металлов (оксиды, продукты коррозии), термическое разложение масел (нагары, асфальтосмолистые отложения), возникновение эмульсионных и масляных пленок, попадание механических частиц (абразив, стружка и т. п.), остатков обработки резанием (стружка, абразив, заусенцы, остатки шлифовальных и полировальных паст, эмульсий), давлением и литьем (фафитные и жировые смазки, пригары, формовочная земля), остатков сварки и пайки (флюс, окалина), вешеств, используемых при хранении и транспортировке (консистентные и консервационные смазки), зафязнений из окружающей среды и др. [3]. [c.27]

    Под коллоидной химией понимают науку о поверхностных явлениях и дисперсных системах . К поверхностным явлениям относятся процессы, пронсходящне на границе раздела фаз, о меж-фазном поверхностном слое и возникающие в результате взаимодействия сопряженных фаз. Каждое тело ограничено поверхностью, и поэтому объектами коллоидной химии могут быть тела любого размера. Однако поверхностные явления проявляются сильнее всего в телах с высокоразвитой поверхностью, которая придает им новые важные свойства. К таким телам относятся поверхностные слои, пленки, нити, капилляры, мелкие частицы. Совокупность этих дисперсии вместе со средой, в которой они распределены, образует дисперсную систему. Дисперсные системы являются наиболее типичными и вместе с тем сложными объектами коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений, формирующих особые объемные свойства этих систем. Именно такими системами является большинство окружающих нас реальных тел. Отсюда все основания называть пауку о поверхностных явлениях и дисперсных системах физикой и химией реальных тел. Все тела, как правило,— это полпкристал-лнческпе, волокнистые, слоистые, пористые, сыпучие вещества, состоящие из наполнителя и связующего, находящиеся в состоянии суспензий, паст, эмульсий, пен, пыли и т. д. Почва, тела растительного и животного мира, облака и туманы, многие продукты пронз-водства, в том числе строительные материалы, металлы, полимеры, бумага, кожа, ткани, продукты питания —все эго дисиерсные системы, особые свойства которых изучает коллоидная химия. [c.9]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Для каждой из действуюцщх химико-технологических систем (ХТС) рассматриваются три этапа предварительного анализа классификация ХТС, определение оптимальных технологических маршрутов и составление оптимального расписания. В результате анали ш определяются лимитирующие стадии для титанатов металлов - прокалка, МЦФП - осаждение пасты, нитраты и оксиды свинца - кристаллизационная очистка. Оптимизация "узких мест" производства без привлечения дополнительных объемов оборудования проводится за счет оптимизации и стабилизации технологических процессов, реализуемых на данной ХТС. Например, при реконструкции действующего производства соединений свинца, только за счет оптимизации структуры потоков и технологического режима, повышена производительность на 70% [16]. [c.104]

    Для полирования кругами применяют особые абразивные материалы с более мелкими (50—5 мкм) зернами, чем при шлифовании венская известь, содержащая окись кальция (до 95%) и небольшое количество окиси магния и других примесей, крокус (РбгОз до 75—97%), окись хрома (СггОз), окись алюминия (АЬОз), трепел и др. Зерна этих абразивов связываются полутвердыми жирами (сало, стеарин, олеин, воск, парафин и т. д.), образуя полировочные пасты, которые наносят на поверхность круга (по периферии) во время его вращения. Полировальные круги состоят из отдельных дисков полотна, фетра, замши, шерсти и т. п. Линейная скорость вращения кругов — от 20 до 35 м/с в зависимости от обрабатываемого металла. [c.368]

    Определение лучше проводить полумикрометодом простейшим вариантом является восстановление на обугленных содовых палочках по Бунзену. Недостатком этого способа является отсутствие налетов оксидов. Для проведения реа1сции необходима сода и деревянные палочки длиной 20—30 см и толщиной 3,5 мм, а также горелка Бунзена. Конец палочки окунают в пасту, полученную смешиванием соды с водой, и нагревают в пламени (операции повторяют несколько раз). Концом полученной таким образом сдовой палочки прикасаются к сухому анализируемому веществу и восстанавливают его в пламени, при этом сода предотвращает горение самой палочки. Обугленный конец вносят в воду, смывают с него уголь и нследуют металлы, как описано выше (восстановление на угле при помощи паяльной трубки). [c.38]

    Разновидность гальванических элементов, называемая сухим элементом, получила ишрокую известность благодаря тому, что этот элемент используется для питания ручных электрических фонариков и радиоприемников. Другое его название-элемент Лекланше, по имени изобретателя, который запатентовал его в 1866 г. В одном из вариантов (кислом) анод выполнен в виде цинковой оболочки элемента, контактирующей с влажной пастой из МпОг, ЫН4С1 и угля. В пасту погружен инертный катод, представляющий собой графитовый стержень, как показано на рис. 19.7. Снаружи сухой элемент имеет оболочку из картона или металла, предохраняющую его от атмосферных воздействий. В этом гальваническом элементе протекают довольно сложные электродные реакции, причем катодная реакция, по-видимому, зависит от скорости разрядки  [c.219]

    Большое положительное значение перенапряжения можно показать на примере электрохимического выделения водорода. Электродные потенциалы цинка, кадмия, железа, никеля, хрома и многих других металлов в ряду напряжения имеют более отрицательную величину равновесного потенциала по сравнению с потенциалом водородного электрода. Благодаря перенапряжению водорода на указанных выше металлах при электролизе водных растворов их солей происходит перемещение водорода в ряду напряжений в область более отрицательных значений потенциала и - становится возможным выделение многих металлов на электродах совместно с водородом с большим выходом металла по току . Так, выход по току при электролизе раствора 2п504 более 95%. Это широко используется в гальванотехнике при нанесении гальванических покрытий и в электроанализе. Изменением плотности тока и материала катода можно регулировать перенапряжение водорода, а значит и восстановительный потенциал водорода и реализовать различные реакции электрохимического синтеза органических веществ (получение анилина и других продуктов восстановления из нитробензола, восстановление ацетона до спирта и др.). Перенапряжение водорода имеет большое значение для работы аккумуляторов. Рассмотрим это на примере работы свинцового аккумулятора. Электродами свинцового аккумулятора служат свинцовые пластины, покрытые с поверхности пастой. Главной составной частью пасты для положительных пластин является сурик, а для отрицательных — свинцовый порошок (смесь порошка окиси свинца и зерен металлического свинца, покрытых слоем окиси свинца). Электролитом служит 25—30% серная кислота. Суммарная реакция, идущая при зарядке и разрядке аккумуляторов, выражается уравнением [c.269]

    Индий припаивается к большинству металлов, а также прилипает к стеклу, кварцу, слюде, керамическим материалам. В частности, с помощью индия соединяют пьезоэлектрические кристаллы. Исключительная пластичность позволяет делать из него прокладки в вакуумных приборах и космических аппаратах [80, 81]. Предлагается применять индий в виде фторогерманата 1п2(ОеРв)з и других сложных фторидов в качестве составной части зубных паст, так как он обладает профилактическим действием против кариеса [82]. Предложено также добавлять фосфат индия к зубным цементам [83]. [c.300]

    Кадмий, содержащийся в амальгаме,— более активный металл, чем ртуть. Поэтому при контакте с раствором соли амальгама кадмия, вследствие перехода части ионов кадмия в раствор, заряжается отрицательно, а раствор, к ней прилегающий,— положительно. На ртути из пасты осаждается некоторое количество ионов ртути, которые создают на ней положительный заряд. В пасте остается избыток отрицателкьных ионов 8042-. [c.283]


Смотреть страницы где упоминается термин Паста металлов: [c.246]    [c.406]    [c.28]    [c.165]    [c.125]    [c.102]    [c.65]    [c.339]    [c.283]    [c.199]    [c.83]    [c.368]    [c.187]    [c.263]    [c.311]    [c.354]    [c.371]   
Химическое оборудование в коррозийно-стойком исполнении (1970) -- [ c.297 , c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Обработка металлов с применением электролитов и паст

Очистка от ржавчины и пассивирование металлов при помощи паст

Паста

Пасты паяльные, содержащие цветные металлы



© 2025 chem21.info Реклама на сайте