Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Код генетический направление

    В начале своего развития угольная петрография была преимущественно описательной наукой. Ее задача сводилась только к описанию ингредиентов в угольной массе. Однако постепенно петрографические исследования расширялись и приобретали генетическое направление. Посредством макро- и микроскопических исследований в настоящее время стремятся не только установить и описать различные составные части твердых горючих ископаемых, но и связать их макроструктуру с природой исходного материала и его преобразованием в зависимости от геологических условий и особенностей соответствующих пластов, а также с различными свойствами твердого топлива и его использованием в промышленности. [c.70]


    Генетическое направление в классификации В.И. Вернадского в дальнейшем было развито [c.20]

    Сложность построения единой классификации, которая заметно ощущается в ряде работ последних лет, приводит к мысли о том, что разрабатывать подобную классификацию нецелесообразно, так как невозможно выделить в системе единой классификации четкие критерии подразделения нефтей по тем или иным показателям, изменяющимся иногда в одном направлении под влиянием разных факторов. Более целесообразно использовать три классификации нефтей по химическому составу, по генетической принадлежности и по геохимическим превращениям (вторичным).  [c.8]

    Выделение генетических типов и соответственно циклов нефтегазообразования позволяет судить об интенсивности и масштабности процессов нефтегазообразования в данном регионе, а также прогнозировать залежи нефти и газа в конкретных стратиграфических комплексах. Так, в Предкавказье было теоретически обосновано наличие самостоятельных циклов нефтегазообразования в триасе, юре, нижнем и верхнем мелу. Особо важное значение для выбора направления геологоразведочных работ в Предкавказье имеет выделение триасового и верхнемелового циклов нефтегазообразования, которым ранее не придавали самостоятельного значения. [c.110]

    То же можно сказать и о гипергенном изменении нефтей. Нефти разных генотипов по-разному реагируют на гипергенные факторы, если учитывать не только плотность, смолистость, потерю легких фракций (изменение которых для нефтей любого генотипа имеет одинаковую направленность — от легких к тяжелым), но и генетические особенности УВ. В общем ряду "легкие — тяжелые" в числовом выражении параметров состава имеются существенные различия. В качестве примера можно привести данные о составе и свойствах окисленных нефтей Прикаспийской НГП. Так, например, нефти юрского и нижнепермского генотипов одинаковой степени окисленности при близких плотности и содержании смолисто-асфальтеновых компонентов различаются по количеству парафино-нафтеновых и нафтено-ароматических УВ и степени циклизации первых. Плотность окисленных нефтей разных генотипов (если сравнивать нефти близкой степени окисленности, оцениваемой нами по ИКС) колеблется от 0,911 до 0,885 г/см , количество метановых УВ в бензинах от [c.153]

    Черты сходства в составе нефтей Старогрозненского месторождения позволяют утверждать, что эти нефти генетически едины, т. е. что все они образовались одна из другой, т. е. из нефти типа А , находящейся в нижележащих горизонтах. (Некоторые дополнительные данные о генетическом единстве старогрозненских нефтей будут приведены далее в разделе, посвященном термолизу асфальтенов.) Сопоставление изменения углеводородного состава этих нефтей по разрезу (снизу вверх) с изменением углеводородного состава нефтей в процессе лабораторного моделирования процесса биодеградации дает все основания отметить единую направленность всех превращений. [c.243]


    В природе синтез белков всегда направлен на формирование определенной первичной структуры и протекает в водных средах при обычных температурах в соответствии с универсальным генетическим кодом под влиянием специфических ферментов. Основная схема этого процесса в настоящее время уже известна. Всю генетическую информацию, обеспечивающую формирование определенной первичной структуры полипептидных цепей и макромолекул белка, несут важнейшие биополимеры, относящиеся к классу сложных полиэфиров, - нуклеиновые кислоты. Эта информация определяется последовательностью соединения друг с другом различных нуклеотидных оснований - звеньев этого полимера. [c.349]

    Новым направлением в селекции являются работы по выведению масличных культур с заданным составом жирных кислот, что важно для более рационального использования масел как пищевых и технических продуктов. Сюда относится разведение подсолнечника, рапса, а также некоторых дикорастущих видов, масла которых содержат около 80% олеиновой кислоты. При этом, однако, необходимо учитывать, что, несмотря на успехи в биотехнологии, для внедрения стойких генетических черт требуется не менее 7—10 лет [29], [c.145]

    К этому направлению научно-технического прогресса следует относиться особенно осторожно. Существует мнение, что биотехнология может внести решающий вклад в решение глобальных проблем человечества. Однако даже с помощью обычной гибридизации — близкородственного скрещивания — получают, по сути, уродов, пусть и с полезными для цивилизации свойствами. С помощью же генной инженерии оказалось возможным создавать структуры ДНК, которых никогда не существовало в биосфере (в химии аналог — ксенобиотики) генная инженерия, таким образом, разрушает барьер, разрешающий генетический обмен только в пределах одного биологического вида или близкородственных видов, позволяет переносить гены из одного живого организма в любой другой. Этот факт открывает перспективы создания, в частности, микроорганизмов и растений с полезными для цивилизации свойствами и таит в себе колоссальную опасность этического и экологического характера. Наиболее известный случай здесь — синтез и использование гормонов роста в животноводстве, приведшие к так называемому коровьему бешенству . [c.248]

    Решая формулу С[ ,, при т = 2 и п = 1, 2, 3, находим все сочетания переменных, а следовательно, и направления эволюции атомов. Результаты сведены в табл. 11. Сравнивая данные таблицы с реальными генетическими рядами Системы [c.112]

    В Системе атомов аналогами нуклонов (побудительными факторами движения в определенных направлениях) являются соответствующие радиоактивные реакции. Причиной перемещения атомов влево — вниз по главным генетическим рядам являются реакции а-распада и деления ядер. Однако от [c.123]

    Такой подход можно было бы назвать генетическим. Наиболее удобным средством его реализации, на наш взгляд, является темпоральная логика (TL-логика). Это сравнительно новое направление модальной логики (первые основополагающие работы появились на рубеже 60-х- 70-х годов) применяется в настоящее время почти исключительно для анализа поведения программных систем. Однако потенциальные возможности TL-логики позволяют существенно расширить область ее применения, включив в нее проблемы надежности не только виртуальных (таких, как программы), но и реальных технических объектов. [c.37]

    Белки тем или иным образом контролируют все метаболические процессы, в том числе реакции образования нуклеотидных предшественников нуклеиновых кислот и реакции, приводящие к полимеризации аминокислот и нуклеотидов. Таким образом, поток информации от ДНК к белкам представляет собой лишь часть большей петли метаболических процессов, причем сам процесс репликации ДНК происходит с высокой степенью точности. Поток генетической информации всегда направлен от ДНК в клетку, и копии с первичного шаблона передаются от поколения к поколению почти в неизменном виде. Простая концепция, выраженная уравнением (15-1), быстро привлекла к себе внимание ученого мира и привела к стремительному развитию биохимической генетики. [c.184]

    Согласно современным представлениям, репликация ДНК протекает по механизму, приведенному в уравнении (15-3). По мере того как ДНК раскручивается в репликационной вилке, вдоль родительских цепей происходит синтез новых кусков ДНК. Возникает важный вопрос происходит ли репликация только в одном направлении или же в начальной точке, с которой начинается транскрипция, образуются две вилки, которые далее перемещаются в противоположных направлениях вокруг хромосомы Ответить на этот вопрос удалось в результате сочетания генетических методов и электронной микроскопии. [c.272]

    Существуют и другие, более близкие опасности. В 1974 г. Комитет по рекомбинантным молекулам ДНК Национальной Академии наук США обратился с призывом о прекращении экспериментов в двух направлениях, которые могут представить опасность для человечества в целом [269]. В своем обращении комитет подчеркнул, что использование Е. соИ для клонирования рекомбинантных молекул может оказаться опасным, поскольку эти бактерии обитают в кишечнике человека и могут обмениваться генетической информацией с бактериями, патогенными для человека. Комитет считает, что следует добровольно отказаться от исследований в двух указанных им направлениях, которые могут привести к случайному включению в хромосому генов, обусловливающих устойчивость к антибиотикам и к образованию токсинов, а также к развитию опухолей. Особые предостережения были высказаны в отношении любых планов, направленных на сцепление фрагментов ДНК животных с ДНК бактериальных плазмид или фагов. Предполагается, что контроль за проведением такого рода исследований должен осуществляться различными организациями, субсидирующими биохимические исследования [269]. [c.296]


    Современные теории развития принимают существование определенных генетических программ и рассматривают весь процесс развития как результат сочетания реакций клетки на воздействие гормонов и индукторов с влиянием внутренней генетической программы [179]. В настоящее время можно высказать только первые догадки о природе внутренних программ. Все же были предложены очень разумные схемы, согласно которым часы развития считают число клеточных делений и в соответствующий момент выключают одни гены и включают другие [180]. Были высказаны конкретные предположения относительно химизма таких часов. Так, указывалось, что вопреки представлению о высокой стабильности ДНК это соединение легко мутирует под влиянием химических факторов. Можно допустить существование особых ферментов, направленно модифицирующих ДНК в определенных участках. В самом деле, известно, что в ДНК содержится определенное количество дополнительных метильных групп, которыми, например, могут быть маркированы отдельные участки (гл. 2, разд. Г, 8). Другая возможность — это дезаминирование содержащих аминогруппу оснований в определенных участках, например в палиндромных последовательностях. [c.361]

    Новые направления физ.-хим. биологии значительно расширили возможности Б. Прежде всего это относится к генетич. инженерии, т.е. к использованию клеток, гл. обр. микроорганизмов, генетич. программа к-рых целенаправленно изменена введением в них молекул ДНК, созданных в лаборатории и кодирующих синтез нужного продукта. Таким путем можно получить значит, кол-во относительно дешевого конечного продукта, мало доступного при использовании др. методов произ-ва. Это обстоятельство, а также возможность сочетания разл. фрагментов ДНК, в принципе позволяющая создавать необходимые генетич. программы, открыли необычайно широкие перспективы (см. также Генетическая инженерия). [c.290]

    Наряду с решением этих коренных вопросов нефтегазовой геохимии и геологии, Н.Б. Вассоевич значительное внимание уделял терминологическим понятиям. Им обосновано введение новых терминов и определений, касающихся органического вещества, его типов, стадий катагенеза, нефтегазоносных бассейнов, классификации нефтей. Н.Б. Вассоевич по праву был признанным лидером наших геологов-нефтяников, геохимиков и литологов, главой прогрессивного зволюционно-генетического направления в нефтегазовой геологии. Его наследие способствовало повышению эффективности открытия новых нефтегазоносных областей и месторождений. [c.29]

    Приведенные выше данные были рассмотрены с точки зрения унаследованности конкретной нефтью характерных черт от ОВ нефтематеринских пород, генерировавших данную нефть. Как видно из приведенного материала, нефть от ОВ наследует довольно большой набор генетических характеристик. Иногда показатели, отражающие генетические черты, имеют близкие значения, но чаще они не идентичны, однако во всех случаях отмечается единая направленность в изменении их по стратиграфическому разрезу. [c.37]

    Прогнозирование типа углеводородных скоплений и их состава с учетом трех основных факторов влечет за собой комплексный анализ геологических и геохимических факторов - тектонического строения, литологии, фациально-генетического типа ОВ, размещение зон генерации УВ, направления региональной миграции, палеотемпературного режима недр. Учет лишь одного какого-либо фактора (например, температуры или фациально-генетического типа ОВ и т. д.) не позволяет правильно прогнозировать состав углеводородных флюидов, так как упрощает проблему сложного взаимовлияния УВ с окружающей средой. В то же время привлечение комплекса необходимой информации без учета специфики нефтегазообразования (генотипа, особенностей изменения нефтей) в каждой конкретной толще также может привести к ошибкам при прогнозировании. [c.152]

    Нефтяные смолы являются генетическим мостом, соединяющим высокомолекулярные углеводороды и асфальтены нефтп. Они наследуют углеродный скелет высокомолекулярных углеводородов, но с более сложной структурой за счет гетероатомов как в полп-конденсированной структуре, так и в периферийных алифатических цепочках в результате реакций дегидрирования п конденсации они беднее по содержанию водорода. Наличие в молекулах смол гетероатомов и особенно пх функциональных групп придает пм более полярный характер по сравнению с углеводородами с аналогичной структурой углеродного скелета, что объясняет их более высокую и лшогообразную по направлениям реакционную способность. [c.260]

    Исследования, проведенные в носледние годы в нашей лаборатории, показали, что между высокомолекулярными ароматическими углеводородами и высокомолекулярными гетероорганическими соединениями (смолы и асфальтены) нефтей существует генетическая связь, благодаря чему удается экспериментально осуществить их взаимные превращения. Это имеет очень важное значение для решения практического вопроса о выборе наиболее рациональных направлений использования высокомолекулярной части нефти в заводских масштабах, а также для понимания геохимической истории нефти. Проблема эта приобретает особую актуальность по двум причинам. [c.6]

    Действующие сегодня классификации рассматривают уголь в основном как энергетическое топливо, поэтому в них недостаточно отражены свойства, важные для процессов химико-тех-нологической переработки. В настоящее время во многих странах ведутся исследования по разработке методов однозначной оценки пригодности любого угля для различных направлений его технологического использования, в том числе и для переработки в моторные топлива. В Советском Союзе в последние годы завершена разработка такой единой классификации углей на основе их генетических и технологических параметров (ГОСТ 25543—82). По этой классификации петрографический состав угля выражается содержанием фю-зинизированных микрокомпонентов (20К). Стадия мета р-физма определяется по показателю отражения витринита (Л ), а степень восстановленности выражается комплексным показателем для бурых углей — по выходу смолы полукоксования, а для каменных углей — по выходу летучих веществ и спекаемости. Каждый из классификационных параметров отражает те или иные особенности вещественного состава и молекулярной структуры углей. [c.67]

    Почти все, кто упомянут в этой книге, живы и продолжают активно работать. Герман Калькар приехал в США и преподает биохимию в Гарвардском медицинском училище, а Джон Кендрью и Макс Перутц остались в Кембридже, где продолжают рентгеноструктурные исследования белков, за которые в 1962 году получили Нобелевскую премию по химии. Лоуренс Брэгг, перебравшись в 1954 году в Лондон, где он стал директором Королевского института, сохранил свой живой интерес к структуре белков. Хью Хаксли, проведя несколько лет в Лондоне, снова вернулся в Кембридж, где исследует механизм сокращения мышцы. Фрэнсис Крик, проработав год в Бруклине, тоже вернулся в Кембридж, чтобы изучать сущность и механизм действия генетического кода, — в этой области он последние десятилетия считается ведущим специалистом мира. Морис Уилкинс еще несколько л ет продолжал исследование ДНК, пока вместе со своими сотрудниками не установил окончательно, что основные признаки двойной спирали были найдены верно. Потом, сделав важный вклад в изучение структуры рибонуклеиновой кислоты, он изменил направление своих исследований и занялся строением и деятельностью нервной системы, Питер Полинг сейчас живет в Лондоне и преподает химию в Юниверсити-колледже, Его отец, недавно оставивший преподавание в Калифорнийском технологическом институте, сейчас занимается строением атомного ядра и теоретической структурной химией. Моя сестра, проведя много лет на Востоке, живет со своим мужем-издателем и тремя детьми в Вашингтоне, [c.128]

    Объективная картина данной графической зависимости открылась на построенной мной Системе атомов, в ее генетических рядах (рис. 5, 8). Оказалось, что никаких кривых второго порядка не существует и что объектом эволюции является не химический элемент (вид атомов), а индивид, т. е. атом конкретного подвида. Все направления эволюции атомов имеют линейный характер (горизонтальные, вертикальные, пологонаклонные и крутонаклонные ряды). Главные генетические ряды параллельны ряду, который на рис. 5 и 10 отвечает формуле А = 2 №. Сегодня понятна и причина прямолинейности графика (рис. 10) на участке от водорода до кальция и выражение ее формулой А = 2 №. Этот отрезок графика лег на Главный генетический ряд № О, который характеризуется равенством числа протонов (р ) и нейтронов (Н) в ядре (Ер" = ЕК). А если учесть, что № =Ер , то запись А = 2 № тождественна записи А = 2 р , так же А = 2 N или А = Ер +I N. [c.120]

    Система атомов убедительно показывает, что кроме четырех генетических рядов эволюции атомов, больше не существует иных, других направлений их эволюции. Названные генетические ряды иллюстрируют все как межвидовые, так и межподвидовые превращения (переходы), базирующиеся на реакциях синтеза и распада. Причем эволюция в каждом ряду идет по своим собственным законам. Это говорит о том, что ист, и не может быть единого закона превращения атомов, а значит, и единой его формулировки. Разве только уравнение бинома Ньютона. Хотя и оно, скорее всего, является математической моделью — алгоритмом этих превращений. [c.125]

    Приемлемая схема структурных преобразований ГЦ-волокна приведена на рис. 9-67. Согласно схеме из целлюлозы при пиролизе формируется остаток из четырехатомных звеньев, образующих зигзаги. Расположение этих звеньев генетически закладывает формирование последующей надмолекулярной структуры углеродного волокна, которая возникает выше 400 С. Принудительное вытягивание упомянутых звеньев приводит к увеличению надмолекулярной ориентации углеродных волокон. Вместе с увеличением степени ориентации снижается их усадка по длине при графитации. При нагревании до 2500"С усадка волокна в направлении, перпендикулярном оси волокна, более чем в 4 раза выше по сравнению с изменением размера вдоль оси. Это свидетельствует об образовании микротекстуры, состоящей из углеродных пачек (рис. 9-66). [c.623]

    Важным следствием, вытекающим из существования генетических и изологических рядов, является возможность направленного синтеза многокомпонентных, или полифункциональных, монослоев на поверхности твердых веществ. Уже сами по себе члены генетического ряда служат примером бифункциональных соединенн , которые могут быть получены либо путем замещения функционалов па другие (реакция (1.21)), либо путем присоединения новых функционалов (реакция (1,22)). Эти соединения образуются при хемосорбции сложных молекул, сопро-пождающейся их диссоциацнек из поверхности при взаимодействии твердого вещества с многокомнонентными смесями в процессе катализа, когда твердое вещество выступает как гетерогенный катализатор. Более того, развитие каталитической технологии сложных систем требует создания нолифункциональ-иых катализаторов. [c.33]

    Все характеристические оксиды, как известно, относятся к основным и кислотным. Первые являются оксидами металлов, вторые генетически связаны с неметаллами. Поскольку нет четкой границы между металлами и неметаллами, существует большая группа амфотерных оксидов. Амфотерность определяется не только положением элемента в периодической системе, но и зависит от его степени окисления. Ориентируясь на разность ОЭО, можно утверждать, что оксиды металлов должны быть преимущественно ионными, а оксиды неметаллов — преимущественно ковалентными. Поскольку для одного и того же элемента с увеличением степени окисления его электроотрицательность растет в этом направлении от низших к высшим оксидам растет ковалентный вклад. Вследствие этого наблюдается изменение свойств оксидов от основных к кислотным. Например, ОЭОсг(+2> = 1,4, ОЭОсп+з) = 1,6, ОЭОсг(+б>=2,4 и свойства оксидов закономерно изменяются  [c.62]

    Успешное развитие химии в целом как интегральной науки невозможно без гармоничного развития частных (дифференцированных) химических наук, но не изолированных, а взаимно дополняющих и обогащающих друг друга. В этом смысле надо признать, что классическая химия в последние годы замегно отстает в своем развитии от некоторых естественно-химических наук, таких как геохимия, биохимия, биофизическая химия и др. Наиболее важный их вывод, который следует перенять науке о свойствах вещества - это то, что существуют чрезвычайно простые и универсальные законы функционирования и развития как живой, так и неживой природы, законы, общие для физических, химических и биологических процессов. Установлено, что поведение химических и биологических субстратов генетически строго закодировано. Используя эти представления, вслед за кибернетикой появилась (1980 г. Г. Хакен [31, 32]) новая интегральная междисциплинарная наука, получившая название синергетика - наука о самоорганизации сложных систем, устойчивости и распаде структур различной природы. Одновременно с синергетикой Б. Мандельбротом (1980 г. [33]) была предложена теория фракталов - структур, состоящих из частей, подобных целому и обладающих дробной мерностью. Благодаря этой теории появилась возможность математически описывать системы необычной сложности, которые считались хаотическими [34]. Было установлено, что практически все окружающие нас объекты в том или ином аспекте проявляют фрактальные свойства. Следствием философского обобщения этой теории явилась идея единства материального мира, о том, что мир зиждется на неких законах, и все процессы мира имеют единое происхождение и аналогичные законы поведения. Исключительно прав А. Пуанкаре, утверждая, что наука развивается по направлению к единству и простоте . [c.16]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Практическая реа.шзация проекта "ГЕНОМ ЧЕ.ШВЕКА", направленного ка полную расшифровку этого генома [4], иг,19нцего размер 10 нуклеотидов и содержащего до юо ООО генов, свидетельствует о том, что уже в самое ближайшее время даже для первичной обработки огромных массивов молекулярно-генетических дашшх ( накопление, верификация, сравнительный [c.5]

    В реферате отражаются структурно-функциональные особениости генетических макромолекул, последовательность каждой из которых рассматривается введенной в направлении от 5 - к 3 - (вводится одна нить ДНК или РНК) или от ч- к с-концу для аминокислотной последовательности. Нумерация начинается с единицы, которая соответствует первому элементу вводимой последовательности. [c.14]

    В последние годы возрастает интерес к теоретическому исследовании процесса трансляции на основе компыэтерного моделирования. Это обусловленно не только тем, что трансляция наряду с репликацией и транскрипцией относится к числу фундаментальных генетических процессов, но также и требованиями генно -инженерных исследований, направленных на разработку методов конструирования искусственных молекулярно-генетических систем с заданными свойствами. [c.155]

    Как мы уже видели, клетки постоянно получают химические сигналы как непосредственно от прилегающих клеток, так и через омывающие жидкости в ответ на это они высвобождают определенные соединения либо так или иначе меняют свойства своей поверхности. Возникает, однако, вопрос, могут ли в ходе такого межклеточного взаимодействия сформироваться 200 типов специализированных клеток, свойственных организму млекопитающих. Тот факт, что даже бактериальные клетки могут переключаться с одной программы развития на другую, делает такое предположение вероятным. У низкоорганизованных животных на определенном этапе развития яйцеклетки синтез ДНК выключается и в клетке начинают накапливаться большие количества РНК, которая используется в дальнейшем эмбриональном развитии. На ранних стадиях эмбрионального развития основную организующую роль играют такие факторы, как полярность яйцеклетки и градиент концентрации всех ее компонентов. Следовательно, ядра яйцеклеток отвечают на внешние стимулы таким образом, что обеспечивают исходную полярность эмбриона. На самых ранних стадиях развития процесс дифференцировки легко обратим. В дальнейшем же превращение дифференцированной клетки в клетку эмбрионального типа становится трудным или даже невозможным. Опыты Гёрдона (разд. В, 2 данной главы) показывают, что ядро дифференцированной клетки обычно (если не всегда) содержит весь генетический материал. Этому факту нисколько не противоречат многочисленные экспериментальные данные, свидетельствующие о том, что на ранних стадиях развития клетки, расположенные в разных частях зародыша, следуют различной внутренней генетической программе так, словно направление дифференцировки у иих предопределено. В некоторых случаях создается впечатление, будто заводятся некие часы развития , которые полностью определяют дальнейший ход дифференцировки. [c.360]

    Сравнительно недавно было показано, что в мРНК, детерминирующей синтез легких цепей иммуноглобулинов, содержится информация как для вариабельной, так и для константной части белковых цепей [191]. Согласно результатам, полученным при генетических исследованиях, процессу транскрипции, вероятно, предшествует объединение областей V и С. Путь дифференцировки клеток, продуцирующих антитела, очень сложен, что, по-видимому, тесно связано со сложностью самого иммунного ответа 192, 193]. Т- и В-клетки (гл. 5, разд. В,4), называемые иногда малыми лимфоцитами, образуются из общего предшественника — стволовых клеток. У птиц В-клетки формируются в специальном органе — фабрициевой сумке и в других частях тада. У млекопитающих, очевидно, В-клеткн образуются главным образом в костном мозге, а Т-клетки — в тимусе (зобной железе), где они находятся под регуляторным влиянием гормона тимозина [194, 195], изменяющего направление развития каким-то еще непонятным обрадом. [c.365]


Смотреть страницы где упоминается термин Код генетический направление: [c.299]    [c.153]    [c.56]    [c.137]    [c.7]    [c.6]    [c.55]    [c.75]    [c.161]    [c.128]    [c.38]    [c.185]    [c.220]    [c.265]   
Молекулярная генетика (1974) -- [ c.443 , c.447 ]




ПОИСК







© 2025 chem21.info Реклама на сайте