Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сшивание макромолекул линейных полимером

    Вулканизация каучуков — это частный случай сшивания линейных полимеров, в процессе которого макромолекулы соединяются поперечными химическими связями с образованием пространственной трехмерной вулканизационной сетки. В подобной структуре макромолекулы не способны к необратимому перемещению друг относительно друга (деформация сдвига), вследствие чего резины, в отличие от каучука, теряют свойства текучести, сохраняя, однако, в широком диапазоне температур способность к высокоэластической деформации. [c.439]


    Таким образом, для возникновения геля в системе линейных макромолекул достаточно ввести в среднем одно разветвленное звено на молекулу — одну сшивку на 2 молекулы. Если исходный линейный полимер полидисперсен, величина ркр будет еще меньше. Это соотношение имеет место и при одновременном -протекании реакции сшивания по двойным связям и роста цепей, только величина Р имеет в этом случае несколько искусственный смысл средней степени полимеризации макромолекул, полученных после разрыва всех сшивок. [c.26]

    СШИВАНИЕ МАКРОМОЛЕКУЛ ЛИНЕЙНЫХ ПОЛИМЕРОВ [c.177]

    Сшивание макромолекул линейных полимеров [c.177]

    В реакциях полимераналогичных превращений образование сетчатых структур является следствием побочных процессов, которые стараются, по возможности, предотвратить, чтобы сохранить линейность макромолекул. Однако проводят и такие процессы химического превращения, в результате которых из первичных линейных полимеров получаются полимеры сетчатой структуры. Такое сшивание , или вулканизацию , линейных полимеров проводят либо в концентрированных растворах полимера, либо при нагревании его до вязкотекучего состояния. Для ускорения процесса межмолекулярного взаимодействия повышают температуру и давление. [c.177]

    Сшивание макромолекул линейных полимеров. В полимерных превращениях образование сетчатых структур является следствием побочных процессов, которые стараются по возможности предотвратить, чтобы сохранить линейность макромолекул. Однако проводят и такие процессы химического превращения, в результате которых из первичных линейных полимеров получаются полимеры сетчатой структуры. [c.317]

    Бездефектной пространственной сеткой считается та, которая получается при поперечном сшивании линейного полимера с очень большой молекулярной массой, так что дефектами сетки в виде концов макромолекул, не входящих в сетку, можно пренебречь. Поперечные химические связи образуют узлы сетки. От каждого узла в сетке резины отходят четыре цепи. Отрезки макромолекул [c.146]

    При сшивании линейных полимеров химическими поперечными связями образуется пространственная сетка из химических узлов, в окрестности которых малые отрезки сшитых макромолекул теряют молекулярную подвижность. Поэтому Гст будет зависеть от числа поперечных связей в единице объема полимера. Например, натуральный каучук, сшитый сульфидными связями, при увеличении содержания серы, вводимой в резиновую смесь, от О до 30 % (масс.) характеризуется изменением Т от 203 до 353 К (эбонит). В этом интервале температур по мере увеличения степени поперечного сшивания материал может перейти из высокоэластического состояния в стеклообразное. Происходит это тогда, когда цепи между химическими узлами становятся столь короткими, что полностью теряют гибкость, т. е. степень полимеризации участка между узлами сетки имеет порядок одного сегмента. [c.201]


    Сшивание макромолекул линейных полимеров путем взаимодействия функциональных групп, содержащихся в разных макромолекулах, происходит с низкой степенью превращения и сопровождается побочными реакциями. [c.16]

    Бездефектной пространственной сеткой считается та, которая получается поперечным сшиванием линейного полимера с очень большой молекулярной массой, так что дефектами сетки типа концов макромолекул, не входящих в сетку, можно пренебречь. Поперечные химические связи образуют узлы сетки. От каждого узла в сетке резины отходят четыре цепи. Отрезки макромолекулы между узлами называют цепями сетки, причем число цепей сетки в два раза больше, чем узлов сетки. [c.107]

    Для вулканизованного ка учука цепью считается часть макромолекулы, заключенная между двумя соседними точками поперечного сшивания. Но и в отсутствие поперечного сшивания для линейного полимера, находящегося в высокоэластическом состоянии,., из формулы (1.4) можно получить отличные от нуля значения N. Роль поперечных сшивок при этом играют точки, в которых происходит запутывание (или захлестывание) молекулярных цепей полимера. [c.15]

    Поперечное соединение макромолекул линейного полимера с образованием полимера сетчатого строения (в производстве пластических масс этот процесс называют сшиванием, в производстве резин вулканизацией). [c.177]

    Иониты, получаемые сшиванием макромолекул гидрофобных полимеров. Присоединение ионогенных групп к звеньям линейных макромолекул, как правило, сопровождается их сшиванием. Так, во время сульфирования полистирола возникают химические узлы в виде сульфоновых мостиков. Число химических узлов зависит от многих факторов, и прежде всего от количества мест наиболее близкого контакта звеньев соседних макромолекул, т. е. от числа физических узлов. В растворах полимеров с линейными макромолекулами число физических узлов должно быть много больше, чем в набухших сетчатых полимерах, так как подвижность их несравнимо выше. [c.110]

    Величина молекулярного веса полимера данного гомологического ряда не оказывает влияния на гибкость полимерных цепей, так как в полимерных цепях разного молекулярного веса величина сегмента одинакова, а различны только количества сегментов. Наличие межмолекулярных химических связей обычно затрудняет конформационные превращения и уменьшает гибкость цепи. Однако, если эти связи располагаются довольно редко, на расстояниях, существенно превышающих величину сегмента, гибкость цепи такого полимера практически совпадает с гибкостью макромолекул линейного полимера такой же химической структуры. По мере увеличения плотности поперечных связей длина отрезков полимерной цепи между соседними точками сшивания уменьшается и гибкость макромолекул понижается. Вследствие взаимодействия между макромолекулами переход из одной конформации в другую осуществляется не мгновенно, а с какой-то конечной скоростью. Иногда проявление гибкости цепей оказывается практически невозможным вследствие исключительно низкой скорости поворотов. В этом случае, хотя число возможных конформаций велико, практически гибкость макромолекул не проявляется. [c.45]

    В зависимости от структуры линейного полимера и размера его макромолекул сшивание при помощи низкомолекулярного [c.178]

    При взаимодействии бифункционального соединения с двумя макромолекулами полимера образуются межмолекулярные химические связи — происходит так называемое сшивание цепей, и линейный полимер превращается в пространственный (трехмерный)  [c.219]

    В отличие от полимераналогичных преврашений реакции, приводящие к переходу линейного полимера в пространственный, являются макромолекулярными. Макромолекула полимера вступает в такую реакцию как единое целое, т. е. результат реакции не зависит от того, какое звено макромолекулы в ней участвует. При этом достаточно прореагировать одной функциональной группе в макромолекуле полимера, чтобы макромолекула полностью утратила кинетическую самостоятельность. Поэтому резкое изменение свойств полимера наблюдается при очень низкой степени превращения функциональных групп. Так, например, для сшивания полиакриловой кислоты со средней молекулярной массой 50 000 теоретически требуется добавить 0,1% этиленгликоля (от массы полиакриловой кислоты), а для придания пространственной структуры хлопковой целлюлозе с молекулярной массой около 1 500 000 достаточно примерно 0,01% гексаметилендиизоцианата. [c.220]

    Бездефектной с хорошим приближением можно считать сетку, получаемую поперечным сшиванием линейного полимера с очень большой молекулярной массой. В такой сетке дефектами типа концов макромолекул и петель можно пренебречь. Поперечные химические связи образуют узлы сетки. От каждого узла в сетке сшитого каучука (резины) отходит более двух цепей. Отрезки макромолекулы между узлами называют цепями сетки. [c.161]


    У линейных полимеров температура стеклования зависит от молекулярной массы, увеличиваясь с ее ростом. Когда же молекулярная масса полимера достигает значения, при котором начинает проявляться гибкость макромолекул. Тс принимает неизменное значение. У пространственных полимеров сшивание макромолекул и образование сетчатой структуры приводят к повышению Тс, тем большему, чем гуще пространственная сетка. [c.24]

    Как видно из приведенных примеров, для перехода от линейной структуры полимера к сетчатой достаточно минимум одной химической связи между двумя соседними макромолекулами, т. е. одна молекула низкомолекулярного вещества способна вызвать качественное изменение состояния двух макромолекул полимера, связав их друг с другом. При этом они теряют способность перемещаться в качестве самостоятельной кинетической единицы. Молекулярная масса малой молекулы сшивающего агента значительно меньше молекулярной массы сшиваемых макромолекул полимера, а поэтому уже крайне малые добавки этих агентов приводят к образованию единой структуры сетчатого полимера. Для сшивания молекул каучука с молекулярной массой 500 ООО достаточно 1 % перекиси или 1,5—2% серы для сшивания целлюлозы с молекулярной массой 1 500 ООО достаточно 0,01% гексаметилендиизоцианата (присоединение гидроксильного водорода целлюлозы к изоцианатным группам сшивающего агента). Сшивание макромолекул можно проводить также путем физических воздействий, приводящих к образованию активных центров (радикалов или ионов) на макромолекулах. Например, при облучении ультрафиолетовым светом или при действии у-лучей на насыщенные и ненасыщенные полимеры образуются свободные радикалы внутри макромолекул. Эти радикалы реагируют друг с другом или с двойными связями других макромолекул, что приводит к возникновению поперечных связей и образованию сетчатой структуры. Механизм этих реакций подобен рассмотренному выше случаю перекисной вулканизации каучуков. [c.46]

    Реакциями сшивания называются реакции образования поперечных химических связей между макромолекулами, приводящие к получению полимеров пространственного строения. Эти реакции могут протекать в процессе синтеза полимеров, а также при переработке уже полученных линейных полимеров. При синтезе полимеров сшивание цепей является большей частью нежелательным процессом, так как при этом получаются нерастворимые и неплавкие продукты, извлечение которых из реактора очень затруднено. Поэтому при полимеризации и поликонденсации обычно получают полимеры линейного или разветвленного строения. При изготовлении из таких полимеров изделий часто специально проводят реакции сшивания (структурирования). В резиновой промышленности эти реакции называются вулканизацией, в промышленности пластических масс — отверждением. [c.69]

    Большое практическое значение имеют сетчатые сополимеры, в основе внутренней структуры которых лежат пространственные конфигурации полимерных цепей, сшитых поперечными связями. Сшивание ( вулканизация ) линейных полимеров идет за счет взаимодействия отдельных химически активных групп с каким-нибудь низкомолекулярным веществом (или отдельным атомом), выполняющим функцию мостикообразующего компонента. В качестве примера на рисунке 15-1 представлена схема строения вулканизированного каучука (лат. уикапиз—огонь). В данном случае макромолекулы каучука сшиты при помощи мостиков, представляющих собой атомы серы. Возможно взаимодействие между активными группами самих полимеров. [c.296]

    Полученные данные свидетельствуют о протекании двух различных процессов во время облучения-сшивания и деструкции макромолекул полимера. Небольшая доза облучения способствует протеканию сшивания, структурированию линейного полимера, снижению подвижности макромолекул и благодаря этому снижению подвижности носителей заряда ионного типа и величины у. Дальнейший рост дозы облучения при экспозиции более 30 мин приводит к развитию процессов деструкции, увеличению концентрации ионных носителей зарядов за счет продуктов, образующихся при окислении и деструкции. В результате наблюдается рост абсолютных значений электропроводности. Экспозиция образцов ПВЦГ более 180 мин приводит к нарастанию хрупкости и разрушению пленок. Следует отметить, что рост кристалличности изотактического ПВЦГ при отжиге образцов вызывает снижение у подобно тому, как это происходит при кратковременном облучении. [c.126]

    Изменение свойств полимера путем увеличения размеров макромолекул и изменения их структуры, например, в результате превращения линейного полимера в полимер сетчатой структуры. Этот метод назван методом костикообразования, или сшивания линейных полимеров. Ко второму направлению может быть отнесен также синтез новых полимеров путем блоксопо-лимеризации и привитой сополимеризации. [c.170]

    Особо следует остановиться на кинетической гибкости сетчатых полимеров. Во-первых, для таких полимеров можно говорить только о кинетической гибкости в конденсированном состоянии, поскольку сетки нерастворимы, во-вторых, форму та (I 29) теряет смысл, поскольку сетчатые полимеры неспособны к течению. Для таких систем следует говорить не о гибкости макромолекулы в целом, а о гибкости участка макромолекулы, заключенного между узлами, с молекулярной массой Если М намного больше величины чоханического сегмента, то для полимера сохраняются выведенные выше зависимости к гибкость его практически не снижается. По мере роста числа сшивок, т. е. снижения Мс, гибкость снижается, и при соизмеримой с величиной механического сегмента, полимер теряет способность к изменению конформации и ведет себя как абсолютно жесткий полимер. Уравнение, характеризующее во.- ра-стание Т при сшивании линейных полимеров, имеет вид [c.104]

    Вследствие изменения конформации макромолекул в растянутом линейном полимере напряжение быстро снижается, а в обра не сохраняются болыние остаточные деформации, В пространственном полимере поперечные химические свя )И между макромо скулами не позволяют им перемещаться, поэтому ретаксация в таких полимерах происходит только до определенного напряжения. Чем больше степень сшивания, тем меньше эффект релаксации [c.260]

    Сшивание полимеров по реакции с низкомолекулярными полифупкциональными всшесгвами нашло наибольшее распространение на практике для превращения линейных полимеров в ipex-мерные продукты. Наглядным примером реакции сшивания является вулканизация натурального и синтетического каучуков, в частности серой, и превращение их в резину. Макромолекулы каучука при взаимодейств.тл с серой образуют поперечные связи, и каучук теряет растворимость и тер- [c.103]

    Сшивание может быть осуществлено как за счет реакций функциональных групп или двойных связей в звеньях различных макромолекул, так и путем обработки линейных полимеров низкомолекулярными веществами ( сшивающими агентами ). Первый метод используется прн переводе резольных смол в резнты (с. 302), а такЛчб при получении сетчатых полимеров из поливинилового спирта (взаимодействия групп ОН из разных макромолекул), полиэтилена, поливинилхлорида и т. д. (действие у-облучения)  [c.613]

    Лимитирущей стадией процесса сшивания является совокупность реакций 1 и 2, Но, с точки зрения конечного результата, определяющими являются две элементарные реакции рекомбинация полимерных радикалов (3) и разложение (6). Первая из них, в зависимости от положения неспаренного электрона, приводит к линейному росту, разветвлению или сшиванию макромолекул, вторая —к деструкции. От преимущественного протекания реакций образования поперечных связей или деструкции в значительной степени зависит эффективность процесса пространственного структурирования, т, е. число полеречных связей, возникающих в полимере в результате распада одной пероксидной группы. В случае полиэтилена полимерные радикалы практически всегда рекомбинируют с образованием поперечных связей. В полимерах, содержащих третичные атомы углерода например, в сополимере этилена с пропиленом), могут идти процессы деструкции рис, 9.1) по схеме  [c.200]

    Выше была рассмотрена поликонденсация бифункциональных соединений, приводяш,ая к образованию линейных полимеров. При проведении полпконденсации в присутствии одного или нескольких соединений с чис.том функциональных групп больше двух вместо линейного получается разветвленный полимер. При приме-ненпи ряда мономеров идет также сшивание с образованием полимеров сетчатой структуры, в которых боковые цепи одной макромолекулы присоединяются другим концом к другой макромолекуле. На рис. 1.1 сопоставлены структуры линейных, разветвленных и сетчатых полимеров. [c.93]

    Однако изучение высокоэластического поведения пленки каптон Н и полимеров веспел показало, что модуль эластичности мало изменяется в широком интервале температур и что сколько-нибудь существенная подвижность в макромолекулах отсутствует. Такое поведение характерно больше для сшитых, чем для линейных полимеров полагают, что сшивание может происходить на заключительной стадии превращения полиамидокислоты в полиимид. В ряде исследований ие удалось обнаружить заметной кристалличности пленки катон Н. от которой также могли зависеть особенности поведения полимера при различных температурах ". В приведенных данных обращает на себя внимание различие в температурах стеклования, определенных двумя методами. Это [c.180]

    Путем совместной полимеризации можно получать не только линейные полимеры с разнообразными свойствами, но также неплавкие и нерастворимые полимеры пространственного строения. Образование пространственных полимеров при сополимеризации наблюдается в том случае, если один из мономеров имеет две и более двойных связей, как, например дивинилбен-зол, дивинилацетилен, дивинилсульфид, дивинилсульфон, диал-лиловый эфир двухосновной кислоты, 1,3,5-гексатриен и т. д. Относительное количество таких мономеров в системе может колебаться в широких пределах. Некоторые из них добавляют в небольших количествах и называют смешивающими добавками . Например, достаточно добавить к стиролу 0,1% диви-нилбензола, чтобы получить неплавкий и нерастворимый сополимер. В результате совместной полимеризации лронсходит сшивание линейных цепей полимера поперечными мостиками и образование трехмерных макромолекул. [c.150]

    Исключительно большие возможности открыло появление ионообменных смол для развития сорбционных методов извлечения антибиотиков и вообще ионов органических веществ. Наряду с указанными выше причинами решающее значение для сорбции антибиотиков играет возможность синтеза сильно набухающих ионитов, обладающих большой внутримолекулярной пористостью. Синтетические ионообменные смолы представляют собой трехмерные полимеры. Образование такого рода соединений состоит из стадии синтеза линейных полимеров и их сшивания с возникновением трехмерной макромолекулы. Введение определенного количества сшивающего агента (например, формальдегида при поликонденсации или дивинилбензола при полимеризации) приводит к образованию полимеров с определенной степенью пористостр , которая проявляется при погружении сорбента в воду или иной растворитель в виде эффекта набухания. Набухание ионообменных смол связано с наличхтем в молекуле полимера кислотно-основных и других гидрофильных групп. Гидрофильные свойства подобных соединений приводят к сольватации растворителя в результате проникновения молекул растворителя внутрь зерен смолы. Большое количество кислотных или основных функциональных групп, находящихся в ионите, вызывает их значительное набухание в водных растворах, результатом которого является большая внутримолекулярная пористость. Карбоксильные катиониты, например, обладающие большой емкостью, характеризуются и большими значениями коэффициентов набухания, а следовательно, и значительной пористостью. [c.8]


Смотреть страницы где упоминается термин Сшивание макромолекул линейных полимером: [c.128]    [c.394]    [c.112]    [c.473]    [c.224]    [c.613]    [c.82]    [c.46]    [c.317]    [c.338]    [c.36]   
Смотреть главы в:

Химия синтетических полимеров -> Сшивание макромолекул линейных полимером




ПОИСК





Смотрите так же термины и статьи:

Линейные полимеры

Сшивание

Сшивание макромолекул полимер



© 2025 chem21.info Реклама на сайте