Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо, транспорт в крови

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]


    Транспортная функция. Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобина—белка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови. Ряд других сывороточных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соответствующие органы-мишени. [c.21]

    Глобулины, представленные а -фракцией, содержатся в крови в комплексе с билирубином и с липопротеинами высокой плотности. Глобулины, мигрирующие при электрофорезе в виде а,-фракции, содержат глобулин и неизвестный гликопротеин. 3-Глобулины включают ряд важных в функциональном отношении белков, в частности трансферрин — белок, ответственный за транспорт железа. С этой же фракцией связан церулоплазмин — белок, транспортирующий ионы меди. Отсутствие этого белка приводит к развитию гепатоцеребральной дистрофии, при которой наблюдается отравление организма ионами свободной меди. В основе болезни лежит врожденный дефицит синтеза церулоплазмина. Наконец, во фракции 13-глобулинов содержится протромбин, являющийся предшественником тромбина-белка, ответственного за превращение фибриногена крови в фибрин при свертывании крови. [c.74]

    Транспорт кислорода осуществляется белком гемоглобином (НЬ), содержащимся в эритроцитах. Каждая его молекула образована четырьмя полипептидными цепями (глобинами), т. е. представляет собой тетрамер с четвертичной структурой (разд. 3.5.3). Каждая цепь глобина (мономер) связана со своей пигментной гем-группой (гемом), придающей крови характерный красный цвет (рис. 14.27). Каждая гем-группа содержит один атом двухвалентного железа (Ре II) и способна непрочно связывать одну молекулу кислорода  [c.166]

    Биологическая роль микроэлементов. Железо играет очень важную роль в процессах аэробного энергообразования в организме. Оно входит в состав белков гемоглобина, миоглобина, которые осуществляют транспорт Oj и Og в организме, а также в состав цитохромов — компонентов дыхательной цепи, на которой протекают процессы биологического окисления и образования АТФ. Недостаточность железа в организме приводит к нарушению образования гемоглобина и снижению его концентрации в крови. Это может привести к развитию железодефицитной анемии, снижению кислородной емкости крови и резкому снижению физической работоспособности. [c.71]

    Комплекс цитохромов переносит электроны на молекулу кислорода. Кислород, поступающий в митохондрии из крови, связывается с ионом железа в геме цитохрома а- в молекулярной форме О2 (подобно тому, как он связывается с гемоглобином в процессе своего транспорта). Затем каждый из атомов молекулы О2 последовательно присоединяет по два электрона и два протона, восстанавливаясь при этом до молекулы воды  [c.324]


    Рассмотрим особенности основных метаболических путей минеральных веществ. Минеральные вещества поступают в организм в свободном или связанном виде. Большая часть минеральных веществ всасывается в кишечнике путем активного транспорта в желудке всасываются только сольватированные ионы. Затем всосавшиеся минеральные соединения из желудочно-кишечного тракта поступают в кровь и лимфу, где связываются со специфическими транспортными белками. Из организма минеральные вещества выделяются главным образом в виде солей и ионов с мочой — элементы натрий, калий, кальций, магний, хлор, кобальт, иод, бром, фтор с калом — железо, кальций, медь, цинк, марганец, молибден и др. [c.452]

    В ряде случаев функциональная активность железы регулируется субстратом , на который направлено действие гормона. Так, например, глюкоза стимулирует секрецию инсулина из островков Лангерганса, а инсулин понижает концентрацию глюкозы в крови, облегчая ее транспорт в ткани, и тем самым устраняет стимулирующее влияние сахара на поджелудочную железу. [c.63]

    Гормональной системе свойственна большая инерционность. Так, например, при употреблении большого количества углеводов в крови появляется глюкоза, которая стимулирует выброс инсулина поджелудочной железой. Инсулин стимулирует быстрый транспорт глюкозы в клетки, в результате чего содержание сахара в крови спустя несколько минут возвращается. к норме. Однако инсулин продолжает действовать и после этого. В течение десятков минут, пока инсулин полностью не разрушится, может понижаться концентрация глюкозы в крови (теперь уже ниже нормы). Если при этом концентрация сахара в крови снизится ниже критической величины, стимулируется выброс" глюкагона, котор.ык вызывает выход глюкозы из печени. Обладая такой же инерционностью действия, как и инсулин, глюкагон молеет повысить концентрацию глюкозы несколько выше нормы, и тогда вновь будет секретироваться инсулин (правда, в меньших количествах, чем сразу после приема сладкой пищи, так как второй сигнал [c.237]

    Лактоферрин может участвовать в транспорте железа из крови в молоко кормящей матери, но это еще не точно установлено. Имеется также несколько предположений о роли этого белка в регуляции поглощения железа из желудочно-кишечного тракта [104]. [c.357]

    Процессы гликолиза и гликогенеза регулируются гормонами адреналином, инсулином, глюкагоном. Адреналин, выделяющийся в надпочечниках, стимулирует реакции гликолиза и снижает скорость гликогеногенеза, при этом улучшается снабжение мышц энергией. Инсулин, вьвделя-ющийся В-клетками островков Лангерганса в поджелудочной железе, усиливает транспорт глюкозы внутрь клеток, из-за чего снижается содержание глюкозы в крови и усиливается синтез гликогена. В ответ на низкое содержание глюкозы в крови адреналин стимулирует выделение в А-клетках островков Лангерганса гормона глюкагона, который стимулирует глюкогенез в печени, в результате образуется большое количество глюкозы, которая поступает в кровь и затем переносится в другие ткани. [c.82]

    Трансферрины (сидерофилины) — группа сложных белков, полученных из разных источников и характеризующихся способностью специфично, прочно и обратимо связывать ионы железа Fe (III) и других переходных металлов. Наиболее подробно из этой группы белков изучен трансферрин сыворотки крови. Функция трансферрина заключается в транспорте ионов железа в ретикулоциты, в которых осуществляется биосинтез гемоглобина. Система трансферрин—ретикулоцит считается весьма перспективной для изучения взаимодействия металла с белком и белковой молекулы с клеткой. [c.85]

    В организме человека содержится около 4,5—5,0 г железа. На долю гемоглобина крови из этого количества (если принять за 100% все железо в организме) приходится 60—70%, миоглобина — 3—5%, ферритина—20% (от 17 до 23%), трансферрина—около 0,18%, функционального железа тканей — до 5%. Содержание железа в организме регулируется главным образом интенсивностью всасывания в кишечнике поступающего с Ш1щей железа. Избыток его не всасывается. Потребность в железе резко возрастает при анемиях различного происхождения. Железо всасывается в кишечнике в виде неорганического двухвалентного иона Ре после освобождения его из комплексов с белками. В клетках слизистой оболочки кишечника железо уже в трехвалентной форме Ре соединяется с белком апоферритином с образованием стабильного комплекса ферритина. Дальнейший транспорт железа к местам кроветворения осуществляется в комплексе с 3 -глобу- [c.503]

    При анемии различного происхождения потребность в железе и всасывание его в кишечнике резко возрастают. Известно, что в двенадцатиперстной кишке железо всасывается в форме двухвалентного железа. В клетках слизистой оболочки кишечника железо соединяется с белком апоферритином и образуется ферритин. Предполагают, что количество поступающего из кишечника в кровь железа зависит от содержания апоферритина в стенках кишечника. Дальнейший транспорт железа из кишечника в кроветворные органы осуществляется в форме комплекса с белком плазмы крови трансферрином. Железо в этом комплексе трехвалентное. В костном мозге, печени и селезенке железо депонируется в форме ферритина—своеобразного резерва легкомобилизуемого железа. Кроме того, избыток железа может откладываться в тканях в виде хорошо известного морфологам метаболически инертного гемосидерина. [c.584]


    Биохимические функции. Кальцитонин является антагонистом паратгормона и ингибирует резорбцию костной ткани. Его биологическое действие реализуется по мембрано-опосредованному механизму и вызывает уменьшение концентрации кальция в плазме крови. КТ действует не только на минеральную составляющую костей, но и на их органический матрикс. Это проявляется в ингибировании костного коллагена, инактивации кислой фосфатазы и Р-глюкуронидазы, а также активации щелочной фосфатазы. Кальцитонин способствует транспорту фосфора из крови в костную ткань для образования гидроксиаппатита в последней, а также оказывает выраженное действие на почки, подавляя канальциевую реабсорбцию кальция и фосфора. Биологическое действие гормонов паращитовидной железы проявляется на фоне действия на обмен кальция и фосфора таких гормонов, как глюкокортикоиды и соматотропин. [c.154]

    Транспорт железа кровью в гемосинтезирующие клетки происходит в комплексе с белком  [c.601]

    Транспорт липидов, тироксина, гормонов коры надпочечникЬв Транспорт липидов, меди Транспорт липидов, железа, гемов, иммунная активность (антитела) Большая часть циркулирующих антител Предшественник фибрина кровяных сгустков Предшественник тромбина, необходимого для свертывания крови [c.767]

    Выделение поступивших в организм токсических веществ происходит различными путями через легкие, желудочно-кишечный тракт, почки, кожу. С выдыхаемым воздухом через легвсие вьщеляются летучие вещества (бензол, толуол, ацетон, хлороформ и многие другие) или летучие метаболиты, образовавшиеся при биотрансформации ядов. Нащ)имер, одним из конечных продуктов биотрансформации хлороформа, четыреххлористого углерода, этиленгликоля и многих других веществ является углекислота, которая выводится через легкие. Резервированные и щ1ркудирующие в крови яды и их метаболиты выводятся почками путем пассивной фильтрации в почечных клубочках, пассивной канальцевой диффузии и активным транспортом. Многие токсические вещества (ртуть, сероуглерод) выделяются потовыми железами кожи, а также слюнными железами. Многие яды и их метаболиты, образующиеся в печени, выделяются с желчью в кишечник. Такой путь выведения характерен для металлов (ртуть, свинец, марганец и др.). Обратная резорбция металлов из кишечника в кровь и из крови в печень обусловливает кишечно-почечную циркуляцию металлов, которая и определяет в итоге долю металла, выводимого кишечником. [c.9]

    Для переноса железа внутри организма используются различные лиганды. У высокоразвитых животных железо переносится с потоком крови трансферринами. Эти железосодержащие белки ответственны за транспорт железа к местам биосинтеза других железосодержащих соединений, таких, как гемоглобин и цитохромы [9, 18]. В трансферринах железо присутствует в степени окисления -+-П1 (Ре + не связывается) и координирует две или три тирозильных группы, связанные с гистидиновыми и, возможно, с триптофанильным остатками белковой цепи. Транс-феррины имеют относительную молекулярную массу около 80 000 [67], в их молекулы входят два атома железа, [c.592]

    Гемоглобин — олигомерный белок, который состоит из четырех субъединиц. Например, НЬЛ состоит из а2р2- Субъединицы а и р в третичной структуре весьма напоминают молекулу миоглобина. Каждая субъединица гемоглобина может связать молекулу О2. При связывании первой молекулы О2 происходит втягивание атома железа в плоскость гема. Это ведет к изменению положения проксимального гис / В и конформации всей полипептидной цепи поворот пары а/р на 15°. Такие изменения облегчают связывания второй молекулы О2. В итоге кривая связывания кислорода гемоглобина имеет 8-образный,вид. Такой тип зависимости определяется кооперативным (совместным) действием всех субъединиц в интересах целой молекулы гемоглобина. Наличие кооперативного эффекта дает гемоглобину новое свойство транспорта газов при 100 мм рт. ст. (в легких) молекула гемоглобина полностью оксигенируется (получает 4 молекулы О2), ниже 80 мм рт. ст. — отдает О2. Например, при / 02=20 мм рт. ст. гемоглобин насыщен кислородом примерно на 20%, а миоглобин на 82%. Очевидно, что оксигемоглобин будет отдавать О2, а миоглобин его связывать. Сродство гемоглобина к О2 характеризуется величиной Р50 — значение />02, при котором наблюдается полунасыщение гемоглобина кислородом. Значение Р50 всегда превыщает значение р02 в периферических тканях. Например, Рзо для НЬА, составляет 26 мм рт. ст., а для фетального НЬР — 20 мм рт. ст. Благодаря этой разнице гемоглобин Р плода отбирает кислород у НЬА[ плацентарной крови матери. После рождения НЬР должен утратить свою функцию, так как, обладая более высоким сродством к кислороду, он хуже освобождает его в тканях. [c.39]

    Переваривание липидов. В ротовой полости и желудке нет ферментов и условий для переваривания липидов. Двенадцатиперстная кищка 1) эмульгирование пищи с помощью желчных кислот и перистальтики 2) из поджелудочной железы выделяется липаза, которая в 12-перстной кишке активируется колипазой комплекс адсорбируется на поверхности капелек жира и гидролизует сложноэфирные связи триацилглицеринов 3) фосфолипиды гидролизуются панкреатическими фосфолипазами Aj, А2, С, D 4) эфиры холестерина гидролизуются панкреатической холестеролэстеразой на холестерин и жирную кислоту. Гидрофобные продукты переваривания всасываются в составе мицелл, состоящих их желчных кислот, фосфолипидов и холестерина в соотношении 12,5 2,5 1. Жиры гидрофобны, поэтому существуют специальные механизмы их транспорта в крови. [c.210]

    Металлопротеиды. Из плазмы крови выделен кристаллический глобулин, способный связывать железо, медь и цинк. Содержание этого белка составляет около 3% от общего содернсания белков плазмы крови. Он пе связан с липидами и включает углеводы (1,8%). Молекулярный вес его около 90 ООО. Каждая молекула способна связать два атома железа. Связь с железом непрочна и при рН-7 железо отделяется от белка. Физиологическая роль металлопротеида заключается в транспорте железа. [c.511]

    Особую группу хромопротеинов составляют гемопротеины, содержащие в качестве простетической группы протопорфирин железа(П) — координационное соединение лиганда протопорфирина с ионом Ре " . Ион металла в составе металлопорфиринов зачастую оказывается координационно ненасыщенным, и именно это свойство определяет биологические функции хлорофилла, гема крови, цитохромов в процессах транспорта газообразных молекул и передачи электронов. Подробнее об особенностях химического строения и биологических функциях порфиринов и их комплексов с ионами металлов в живых организмах см. главу 5. [c.91]

    Механизм движения везикул в клетке, очевидно, не диффузионный. Как мы увидим в дальнейшем, внутри живой клетки, как и в отдельных ее органеллах, нет места для диффузионной диссипации энергии. Все движения в клетке управляются межмолекулярными взаимодействиями и локальными электрическими полями. Так организован и транс-цитоз — транспорт молекул через клетку. Этот процесс характерен для поляризованных клеток, таких как эпителиальные клетки кишечника, которые имеют базальную и апикальную поверхности (каждая со своим определенным фосфолипидным составом), создающие электрическое попе в клетке и определяющие направление транспорта везикул. Примером может служить адсорбция антител, содержащихся в молоке матери, клетками кишечника новорожденного. Эти антитела поглощаются апикальной поверхностью эндотелиальных клеток, переносятся внутри клетки к базальной поверхности и затем вьщеляются с базальной поверхности в кровь. Аналогично организован механизм секреции тирео-идного гормона. Сначала тиреоглобулин выделяется в просвет фолликула щитовидной железы, затем происходит эндоцитоз тиреоглобулина эпителиальными клетками, в составе везикул он транспортируется через клетку, одновременно подвергаясь частичному протеолизу, и образованный в везикулах низкомолекулярный гормон тироксин секретируется в ближайший кровеносный капилляр. [c.120]

    Явление трансцитоза обнаружено при движении белков плазмы через эндотелий капилляра (кровь — эндотелий — клетка или межклеточная среда), транспорте IgG через эпителиальный слой печени и молочной железы. В ходе трансцитоза также наблюдается рециклизация плазмалеммы. Эндотелий капилляров способен в обоих направлениях между плазмой крови и внеклеточной жидкостью осуществлять быстрый обмен макромолекулами путем пиноцитоза или путем диффузии через межклеточные щелевидные контакты. Клетки эндотелия образуют гладкие эндосомы для системы трансцитоза и обычные эндосомы с трансформацией в лизосомах. По одним данным, клетки эндотелия содержат 10 гладких эндосом ( / = 500— 1000 нм), которые занимают 10% клеточного объема и обеспечивают трансцитоз, по другим — многочисленные мелкие гладкие эндосомы ( /=60—70 нм) составляют 30—40% клеточного объема эндотелия и осуществляют быстрый транспорт веществ менее чем за 1 мин. [c.32]

    Гликоген ресинтезируется в покоящейся мышце этот процесс ускоряется в присутствии инсулина — гормона, секретируемого -клетками поджелудочной железы в ответ на повышение концентрации глюкозы в крови. Инсулин стимулирует транспорт глюкозы в мышцу, активируя переносчик глюкозы в плазматической мембране [5], в результате чего значительная часть перешедшей в ткань глюкозы используется для синтеза гликогена. [c.62]

    Сведения по биохимии порфиринов и гема являются основой, необходимой для понимания различных функций гемопротеинов в организме (транспорт кислорода, транспорт электронов, метаболизм лекарственных соединений и т.д.). Порфи-рии—это группа заболеваний, обусловленных нарушениями биосинтеза различных порфиринов. Эти заболевания встречаются сравнительно редко, но практикующие врачи должны о них знать больные порфирией могут обратиться к дерматологам, гепа-тологам и психиатрам сравнительно часто встречается желтуха, обусловленная повышением содержания в плазме билирубина крови. Это повышение может быть вызвано либо чрезмерным образованием билирубина, либо нарушением его экскреции оно наблюдается при многих заболеваниях, от вирусного гепатита до рака поджелудочной железы. [c.356]

    Многие белково-пептидные гормоны образуются из предшественников большего молекулярного веса, и секреция этих гормонов становится возможной только после того, как произойдет отщепление лишнего фрагмента. Так, секреции инсулина предшествует превращение в р-клетках препроинсулина в проинсулин, а затем в инсулин (см. раздел 2.2.1). Существование прогормонов защищает эндокринную железу от местного действия гормона, обеспечивает его внутриклеточный транспорт. По мере превращения препрогормона в гормон, как правило, возрастает гидрофильность молекулы. Посдедовательная модификация белка приводит к тому, что из эндоплазматического ретикулума он переходит в цистерньг аппарата Гольджи, а затем в специальные образования (везикулы) плазматической мембраны. В везикулах завершается синтез молекулы гормона, мембрана везикулы защищает гормон от инактивации, но главный выигрыш, который дает такой способ запасания гормона, — это быстрый выброс в кровь больших количеств регулятора. Биосинтез некоторых белково-пептидных гормонов, их транспорт к периферии секреторной клетки занимает 1—3 ч. Очевидно, что воздействие на биосинтез приведет к изменению уровня этих гормонов в крови лишь через несколько часов. Влияние же на секрецию гормонов, синтезированных впрок и запасенных в специальных гранулах, позволяет повышать концентрацию гормонов в крови в не- сколько раз за секунды или минуты. [c.103]

    В тканях млекопитающих обнаружено несколько основных систем активного транспорта, таких, как натриевый и кальциевый насосы (Ыа -насос и Са +-насос), системы транспорта глюкозы и других сахаров и системы транспорта аминокислот. Наряду с этим высокоселективные транспортные системы, включающие специфические белковые переносчики, могут функционировать при переносе определенных нонов из внеклеточной во внутриклеточную среду. Примечательные примеры представляют собой участие апоферри-тина в регуляции передвижения железа из просвета кишечника в плазму крови (гл. 32) и активный транспорт анионов, опосредованный полипептидами, присутствующими в мембране эритроцита (гл. 32). Здесь кратко рассмотрена только первая система. [c.377]

    IgA-основной класс антител в секретах (молоке, слюне, слезах, секретах дыхательных путей и кишечного тракта). Он представлен главным образом четырехцепочечными мономерами (подобно IgG) или же димерами, содержащими одну J-цепь и одну цепь, называемую секреторным компонентом (рис. 18-19). В составе секретов IgA представляет собой димер. Он транспортируется из внеклеточной жидкости в секретируемую жидкость таким же способом, как молекулы IgG-из материнской крови в кровь плода, т. е. путем трансцитоза. В данном случае в транспорте участвуют Рс-рецепторы особого типа, которые имеются на базальной поверхности эпителиальных клеток, выстилающих кишечник, бронхи или протоки молочных, слюнных или слезных желез. Здесь Рс-рецепторы связывают димеры IgA из внеклеточной жидкости (рис. 18-20). [c.233]

    Транспорт и накопление. Транспорт многих небольших молекул и ионов осуществляется специфическими белками. Например, содержащийся в эритроцитах гемоглобин переносит кислород к тканям, тогда как близкий к нему белок миоглобин запасает кислород в мышцах. В плазме крови железо транспортируется в виде комплекса с трансферрином, а в печени оно накап- [c.18]


Смотреть страницы где упоминается термин Железо, транспорт в крови: [c.417]    [c.417]    [c.128]    [c.182]    [c.247]    [c.420]    [c.416]    [c.622]    [c.211]    [c.343]    [c.83]    [c.84]    [c.223]    [c.238]   
Молекулярная биология клетки Сборник задач (1994) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Железо в крови



© 2024 chem21.info Реклама на сайте