Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химотрипсин энергия связывания

    Свободная энергия связывания субстрата расходуется на катализ и на обеспечение специфичности. Начиная с химотрипсина, возникла традиция раздельного рассмотрения специфических связывающих взаимодействий между субстратом и ферментом (разд. 10.2) и собственно каталитического процесса, который описывается в терминах химических модельных реакций (см. ниже). [c.274]

    Оценка полной энергии связывания на примере химотрипсина [c.285]


    Изучение комплементарности фермента переходному состоянию субстрата с использованием аналогов переходного состояния субстрата может быть осложнено наличием лишних связей с группами, введенными в молекулу аналога. В гл. 9 было показано, что связывание небольшой группы дает существенный вклад в энергию связывания, когда в процесс вовлекается специфический для этой группы центр связывания. Например, вклад метиленовой группы в энергию связывания может составлять 12 кДж моль (3 ккал-моль ), а вклад гидроксильной группы за счет образования водородной связи — 25 кДж моль (6 ккал-моль- ). Даже если специфические центры связывания не затрагиваются, большой энергетический вклад могут дать гидрофобные эффекты замена в фенильном кольце ацетильной группы на атом С1 приводит к 50-кратному увеличению прочности связывания этого кольца в гидрофобном кармане химотрипсина [13]. [c.302]

    В частности, потенциальная кривая боковой цепи сер-195 в активном центре а-химотрипсина (см. рис. XIV. 10) содержит три неглубоких минимума (8-12 кДж/моль). Это показывает, что вращение вокруг связи С -С может происходить в широком интервале значений угла )(, без серьезных стерических затруднений. Нри удалении воды (см. рис. XIV. 10), что происходит при связывании субстрата, боковая цепь серина приобретает практически полную свободу вращения в интервале х от —120 до 120°. Ее новое положение уже определяется стабилизирующим взаимодействием с расщепляемой группой субстрата. Кроме того, распределение по значению конформационной энергии остатков, непосредственно участвующих в фермент-субстратном связывании в а-химотрипсине, лизоциме или во взаимодействии с гемом в миоглобине, аналогично энергетическому распределению других остатков. [c.423]

    В согласии с механизмом (4.40) субстратоподобный ингибитор действительно вытесняет из активного центра несколько молекул воды, как это было обнаружено при рентгеноструктурном анализе кристаллического химотрипсина [123]. Однако этот механизм не согласуется с данными по влиянию среды на гидрофобное фермент-субстратное взаимодействие (см. 4 этой главы). Кроме того, механизм (4.40) противоречит тому, что двойной выигрыш свободной энергии экстракции реализуется лишь в переходном состоянии химической реакции [см. уравнение (4.39)], в то время как в комплексе Михаэлиса вклад гидрофобного фермент-субстратного взаимодействия меньше [см. уравнение (4.29)]. Иными словами, в химотрипсиновом катализе не вся потенциальная свободная энергия сорбции, которую предполагает модель (4.40), равная 2АСэкстр, реализуется в виде прочного связывания субстрата с ферментом. Из диаграммы, представленной на рис. 44, видно, что в комплексе Михаэлиса (или ацилферменте) реализуется в виде свободной энергии связывания E-R лишь инкремент свободной энергии сорбции, отражающий перенос субстрата из воды в неводное окружение (в среду белковой глобулы), равный АО кстр [см. также уравнение (4.29)]. Для объяснения этих фактов следует допустить, что гидрофобное фермент-субстратное взаимодействие идет в две стадии 1) образование фермент-субстратного комплекса протекает по механизму (4.19), который не противоречит данным по солевому эффекту (на их основании он был и предложен), и термодинамические закономерности его согласуются с уравнением (4.29). Этот механизм также предполагает вытеснение нескольких молекул воды из [c.155]


    Непродуктивное связывание предотвращает гидролиз пептидов, состоящих из нежелательных о-аминокислот. Пептиды, состоящие из D-аминокислот, также могут прочно связываться химотрипсином. Однако в этом случае образуется сравнительно малореакционноспо-собный фермент-субстратный комплекс, поскольку расщепляющаяся связь не ориентирована должным образом относительно каталитического центра [629] таким путем свободная энергия связывания расходуется на ингибирование реакции с аналогом субстрата, которая могла бы привести к нежелательным продуктам. Непродуктивное связывание, по-видимому, является общим механизмом, обеспечивающим специфичность фермента [630, 631]. [c.248]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    Простейшей и наиболее непосредственной моделью гидрофобного связывания является перенос соединения из водного раствора в другую фазу, которой может быть как само изучаемое соединение в жидком состоянии, так и. любая другая неводная фаза. Свободная энергия этого переноса, вычисленная из коэффициентов распределения между двумя фазами или в случае жидкого соединения, по данным растворимости дает грубую оценку свобод-но11 энергии, ожидаемой для гидрофобного взаимодействия с участием этого соединения. Так, связывание ряда углеводородов с сывороточным альбумином и ряда углеводородных ингибиторов с активным центром химотрипсина в каждом случае обратно пропорционально растворимости этих углеводородов в воде [17, 18]. Зависимость логарифма растворимости от энергии связывания свидетельствует о том, что изменения в структуре углеводорода влияют на его энергию связывания с сывороточным альбумином приблизительно вдвое слабее, чем на растворимость, в то время как в случае ингибиторов химотрипсина влияние па ингибирующую способность и растворимость почти [c.307]

    Аминоацил-тРНК — синтетазы обладают исключительно высокой специфичностью. Энергии связывания, полученные для этих ферментов, имеют, вероятно, максимальные из всех принципиально возможных значений. Несколько более низкие значе-ния получаются в случае химотрипсина — фермента, обладаю-щего широкой специфичностью. [c.285]

    Наиболее четкие данные об использовании энергии связывания в катализе получены при кинетических исследованиях сериновых протеаз. Напомним (гл. 1), что эти ферменты имеют ряд подцентров для связывания аминокислотных остатков полипептидных субстратов. Из табл. 10.1 видно, что, когда больщие по размеру группы занимают в химотрипсине центр связывания уходящей группы, их энергия связывания используется для увеличения кш/Кк. К увеличению k ax/Кж приводит и удлинение полипептидной цепи субстратов эластазы. Интересно отметить, что в приведенных примерах энергия связывания добавочных групп не понижает /См, т. е. используется не для связывания субстрата, а для увеличения at- [c.297]

    Центральную проблему специфичности можно сформулировать так каким образом фермент отличает специфический субстрат от другого, меньшего или равного ему по размеру (изо-стерического) субстрата Отличить больший по размеру субстрат от специфического субстрата нетрудно, поскольку полость фермента, в которой происходит связывание, может быть достаточно велика, чтобы связать небольшой специфический субстрат, но слишком мала, чтобы в нее поместилась более крупная молекула конкурирующего субстрата. Однако небольшой по размерам субстрат не встречает таких стерических препятствий. В этом случае энергия связывания, используемая в катализе, будет меньше. Такие примеры были рассмотрены в разделе, посвященном сериновым протеазам. Большие по размеру производные ароматических аминокислот не могут связываться небольшим связывающим карманом эластазы в отличие от меньших по размерам производных аминокислот, способных связываться и реагировать с химотрипсином. Однако, как обсуждалось в начале предыдущей главы, реакции с участием меньших по размеру субстратов характеризуются значительно меньшими значениями параметров йса1 и кса /Кж- Различить субстраты не составляет труда и в том случае, если между ними имеются существенные стереохимические различия. Как указывалось в конце гл. 2, при замене Ь-аминокислоты О-аминокис-лотой происходит такая перестановка двух групп у хирального атома углерода, что продуктивное связывание субстрата становится невозможным. [c.329]


    Несмотря на все эти подробности, многие важные аспекты механизма ацилирования все еще неясны. Например, мы не знаем, каким образом энергия связывания N-ациламино-фрагмента субстрата иногда используются для увеличения k atj 3 Н6 ДЛЯ уменьшения /См (табл. 10.1). Нам не известно, какой вклад в катализ вносит погруженный в белковую глобулу Asp-102, который входит в систему с переносом заряда (какой бы была активность химотрипсина, если бы аспартат был заменен аспарагином). [c.371]

    Алифатические обратимые конкурентные ингибиторы. Как видно из рис. 37, сррбционный участок активного центра малоспецифичен по отношению к структуре алифатической цепи в молекуле ингибитора (алканолы). Независимо от того, является ли алифатическая цепь нормальной или разветвленной, эффективность обратимого связывания алканола КОН на активном центре определяется валовой гидрофобностью группы К. А именно, величина lg i, характеризующая прочность комплекса, возрастает линейно (с наклоном, близким к единице) со степенью распределения 1 Р этих соединений между водой и стандартной органической фазой (н-октанол). Наблюдаемая при этом величина инкремента свободной энергии переноса СНа-группы из воды в среду активного центра равна приблизительно —700 кал/моль (2,9 кДж/моль) (для низших членов гомологического ряда). Эта величина близка к значению инкремента свободной энергии, которое следует из известного в коллоидной химии правила Дюкло—Траубе [90—92] и характерна для свободной энергии перехода жидкой СНа-группы из воды в неводную (гидрофобную) среду [85]. Все это позволяет рассматривать гидрофобную область активного центра химотрипсина как каплю органического растворителя, расположенную в поверхностном слое белковой глобулы. Эта капля либо адсорбирует гидрофобный ингибитор из воды на поверхность раздела фаз, либо, будучи расположенной несколько углубленно, полностью экстрагирует его. С точки зрения микроскопической структуры гидрофобной области правильнее было бы рассматривать ее как фрагмент мицеллы, однако такая детализация представляется излишней, поскольку известно, что свободная энергия перехода н-алканов из воды в микроскопическую среду мицеллы додецилсульфата слабо отличается от свободной энергии выхода тех же соединений из воды в макроскопическую жидкую неполярную фазу [93]..  [c.142]

    Компенсационный эффект свойствен ферментативным процессам. Так, при гидролитическом расщеплении эт-илового эфира Ы-ацетил-Е-триптофана химотрипсином АР очень мало, а ДЯ и Д5 велики. В сущности, почти все данные, пр 1веденные в последних трех столбцах табл. 6.2, свидетельствуют о компенсации. Связывание ряда ингибиторов ацетилхолинэстеразой также сопровождается компенсацией — ДЯ варьирует в этих процессах от —7 до +2 ккал/моль, а Д5 от —10 до - -20 кал/моль-град [26. Если здесь справедливо предположение об определяющей роли воды, то нужно установить, как влияет на поведение белковых молекул окружающая водная структура. Ламри и Ражендер считают, что связь белка с водой проявляется в изменении объема белковой молекулы в ходе реакции. Как будет показано в 6.5 и 6.7, ферментативная активность зависит от конформационных превращений белка и, тем самым, глобулы могут изменять свой объем. Изменение энергии водно-белковой системы можно представить в виде [c.372]

    Можно думать, что в ФСК отбираются те конформации белка и субстрата, которые находятся в структурном соответствии друг с другом, обеспечивающем оптимальное значение свободной энергии взаимодействия [64, 65]. Структурное соответствие при образовании ФСК можно считать динамическим, индуцируемым. Таким образом, при образовании ФСК могут происходить изменения реальных конформаций белка и субстрата или одного из них. Васлов и Доэрти констатировали наличие конформационных эффектов при связывании химотрипсином молекул субстратов и конкурентных ингибиторов [66]. Структурное соответствие в ФСК до некоторой степени подобно соответствию в гетерогенном катализе (см. стр. 359). Исходя из своей мультиплетной теории, Баландин предложил качественную схему структурного соответствия фермента, кофермента и субстрата [67, 68]. [c.387]


Смотреть страницы где упоминается термин Химотрипсин энергия связывания: [c.90]    [c.291]    [c.321]    [c.316]   
Структура и механизм действия ферментов (1980) -- [ c.285 , c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Оценка полной энергии связывания на примере химотрипсин

Связывание

Химотрипсин



© 2025 chem21.info Реклама на сайте