Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость диффузионная

    Для вывода дифференциального уравнения, описывающего кинетику гетерогенно-каталитического процесса в сферической пористой таблетке, используем уравнение баланса реагента А в ее элементарном объеме. Поскольку каждая таблетка в реакторе со всех сторон обдувается газом с постоянной концентрацией реагентов, можно считать, что скорость диффузионного процесса в сферической таблетке будет зависеть только от расстояния г до центра таблетки. Поэтому для упрощения вывода в качестве элементарного объема выбирается объем в виде полой сферы, равный Апг йг. Сферический элементарный объем ограничен двумя сферами с радиусами г и г г. Площадь поверхности первой сферы будет равна 4лг , второй — 4л(г + л) . Приход реагента А в элементарный объем будет определяться диффузией через поверхность сферы с радиусом г + dг. Согласно уравнению Фика количество вещества в потоке будет равно [c.649]


    Сероводород, в отличие от двуокиси углерода, не вступает в химические реакции, такие как (III) или (IV), а теряет протон. При абсорбции щелочным раствором сероводород образует ион HS" по реакции переноса протона, которую можно считать мгновенной по сравнению со скоростью диффузионных процессов. [c.156]

    Га—скорость диффузионного массообмена. [c.17]

    При практическом использовании диаграмм состояния учитывают особенности силикатных систем, которые приводят к отклонениям от равновесных состояний. В силикатных системах вследствие высокой вязкости расплавов и малой скорости диффузионных процессов истинное равновесие устанавливается с большим трудом. Это способствует сохранению различного рода неравновесных состояний, переохлаждению расплавов, возникновению стеклообразного состояния. Наиболее отчетливо неравновесные состояния проявляются при охлаждении, осуществляемом со сравнительно высокой скоростью. Возможность фиксации неравновесных состояний при резком охлаждении используется как положительный фактор в производстве стеклоизделий, материалов, содержащих стекловидную фазу, и др. [c.48]

    При проведении химических реакций часто применяют контактирование газов или жидкостей с твердыми частицами. В наиболее распространенных случаях твердое вещество является катализатором. Обычно твердое вещество гранулируют для улучшения его реакционной способности или когда оно используется в нагревателях в качестве твердого теплоносителя. Такие процессы чаще всего проводят в потоке, и течение сопровождается падением давления по направлению потока. Кроме того, обычно наблюдаются значительные тепловые эффекты, а иногда сам процесс лимитирует скорость диффузионной массопередачи. Нередко все эти явления сопутствуют друг другу. [c.241]

    Х-5. Скорость реакции, протекающей в потоке, движущемся через слой катализатора, определяется скоростью диффузионного массообмена. Приняв, что скорости подачи сырья находятся в соотношении X, найти соотношение размеров прототипа и модели, а также соотношения параметров теплопередачи. Заметим, что числа Рейнольдса должны быть равны для обоих реакторов. [c.352]

    Скорость диффузионного перемещения молекулы в направлении произвольно выбранной оси I определяется уравнением сдвига частицы в результате броуновского движения  [c.592]


    При к>р скорость диффузионного переноса определяет скорость всего процесса и реакция протекает во внешней диффузионной области [c.10]

    Независимо от электрохимической природы металлов, наличие окисных пленок на их поверхности (например, на титане, никеле, олове) или диффузионного контроля коррозионного процесса (например, у олова) значительно понижает восприимчивость металлов к действию ингибиторов коррозии, так как ингибиторы практически не адсорбируются на окисленной поверхности металлов, а также не влияют на скорость диффузионных процессов. [c.349]

    Обычно при низких температурах гетерогенный процесс идет в кинетической области, а при высоких — в диффузионной. Объясняется это тем, что при низких температурах диффузионные процессы протекают значительно быстрее, чем процессы, скорость которых подчиняется уравнению Аррениуса. С повышением температуры скорость последних резко увеличивается, в то время как скорость диффузионных процессов практически не меняется. В результате по достижении некоторой температуры скорости стадий кинетической и диффузионной областей процесса выравниваются. А при дальнейшем повышении температуры скорость стадий кинетической области процесса превышает скорость стадий диффузионной области и он переходит в диффузионную область. При обратном изменении температуры системы происходит обратная смена областей протекания. [c.167]

    Величину АСа можно определить из равенства скорости диффузионного переноса и скорости процесса кристаллизации на поверхности [c.176]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]

    Для оценки эффективности возможных путей воздействия на скорость гетерогенной реакции очень важно знать, какая из стадий ее является в данных условиях наиболее медленной и, следовательно, определяющей скорость реакции в целом. В одних случаях этой стадией являются процессы диффузии того или другого компонента реакции из объема фазы к поверхности раздела или наоборот. В других —само химическое взаимодействие на поверхности раздела. Различие между этими случаями наиболее сильно проявляется в зависимости скорости реакции от температуры. Скорость диффузионных процессов изменяется с температурой сравнительно слабо (примерно на 1—3% на градус), а скорость химического взаимодействия—значительно сильнее (примерно на 10—30% на градус, в зависимости от энергии активации). [c.489]

    Для этого необходимо ознакомиться с уравнениями, описывающими скорости диффузионных процессов. Скорость диффузионного процесса в направлении произвольно выбранной оси I можно описать, используя уравнение Фика [c.649]

    Курс лекций сочетается с семинарскими занятиями, на которых студент осваивает рещение конкретных инженерных задач определение скорости химико-технологического процесса с обязательным учетом соотношения скоростей диффузионных процессов и химических реакций, их зависимости от параметров технологического режима. При этом студент приобретает навыки применения формул, соответствующих математическим моделям рассматриваемых реакторов. [c.3]

    Зависимость от температуры константы скорости диффузионного процесса определяется выражением [c.375]

    Температурный коэффициент скорости диффузионного процесса может быть выражен [c.375]

    Часто скорость изотермической перегонки лимитируется скоростью диффузионного массопереноса в дисперсионной среде, которая следует закону Фика и зависит в данной среде (постоянный коэффициент диффузии) только от градиента концентраций или давлений (разности химических потенциалов). В свою очередь градиент концентраций (давлений) определяется различием раз- меров частиц, между которыми происходит массоперенос. Рассмотрим эту связь в системе с жидкой дисперсионной средой, в которой частицы разных размеров имеют различную раствори- мость (для газообразных сред соотношения останутся теми же, только вместо концентрации можно использовать давление)., В соответствии с уравнением Кельвина [применительно к растворам его часто называют уравнением Фрейндлиха — Оствальда, см. уравнение (II. 170)] растворимость с (г) связана с размером г сферических частиц следующим соотношением  [c.277]


    Так как скорость диффузионного массопереноса определяется разностью концентраций у поверхности малой (r ) и большой (/"а) частиц, то [c.277]

    Пример 5. Сравнить скорость диффузионного горения капли жидкого топлива и скорость диффузионного горения частицы угля (кокса) в сопоставимых условиях. [c.257]

    В условиях очень больших скоростей реакции недостаточная скорость диффузионного переноса вещества внутри зерен пористого катализатора приводит к изменению концентрации реагирующих веществ и продуктов реакции у активных центров катализатора. В этих условиях найденная кинетика не будет соответствовать истинной кинетике каталитической реакции отличными от истинных будут найденные значения энергии активации и констаиты скорости реакции [1, 12]. [c.323]

    Скорость диффузионных процессов прямо пропорциональна площади поверхности, участвующей в процессе, и обратно пропорциональна толщине диффузионного слоя [c.165]

    При охлаждении аустенит делается термодинамически неустойчивой фазой при температурах ниже 727° С термодинамически устойчив перлит или перлит с избытком феррита или цементита. Чем больше переохлаждение, тем больше разность энергий Гиббса аустенита и перлита, стимулирующая превращение. Но, в то же время, чем больше переохлаждение (т. е. чем ниже температура), тем медленнее протекает диффузия атомов. В результате одновременного действия этих противоположных тенденций скорость превращения аустенита в перлит оказывается максимальной при небольших переохлаждениях, т. е. при медленном понижении температуры. При больших же переохлаждениях, при быстром снижении температуры, скорость диффузионных процессов приближается к нулю и превращение становится невозможным. Однако кристаллическая решетка же,леза перестраивается при любой скорости охлаждения, так что в результате понижения температуры 7-железо превращается в /3- и а-железо. Таким образом, в основе закалки стали лежит превращение аустенита в пересыщенный твердый раствор углерода в а-железе. Эта фаза носит название мартенсита, будучи термодинамически неустойчивой, она не находит отражения на диаграмме состояния. [c.626]

    Скорость диффузионного перемещения молекулы в направлении произвольно выбранной оси I определяется уравнением сдвига частицы [c.592]

    Уравнение (50.2) можно сопоставлять с экспериментальными данными лишь для процессов, скорость которых определяется стадией разряда и, следовательно, для которых можно пренебречь конечной скоростью диффузионной стадии. Таким условиям удовлетворяет хорошо изученная реакция выделения водорода из кислых растворов на поверхности ртутного катода. При разряде ионов водорода [c.251]

    Уравнение (51.7) лежит в основе так называемых релаксационных методов изучения кинетики быстрых электрохимических реакций. Основная идея релаксационных методов заключается в том, что при сокращении времени t между подачей импульса, выводящего систему из равновесия, и регистрацией состояния системы уменьшается концентрационная поляризация. В пределе при i- 0, когда скорость диффузионной стадии стремится к бесконечности, концентрационная [c.260]

    На практике редко встречаются простые электрохимические системы, для которых кинетические закономерности стадии разряда — ионизации можно было бы экспериментально изучить как вблизи равновесного потенциала, так и при значительном удалении от равновесного состояния. Это связано с различной зависимостью от потенциала диффузионной стадии электродного процесса и стадии разряда — ионизации. С одной стороны, после достижения предельного диффузионного тока скорость диффузионной стадии не зависит от потенциала. С другой стороны, по.мере удаления от равновесного потенциала [c.254]

    Физический смысл такой экстраполяции состоит в том, что при О) -> оо, когда время внесения возмущений в диффузионный слой стремится к нулю, скорость диффузионной стадии оказывается бесконечно большой, что позволяет измерить скорость стадии разряда — ионизации (см. 36). [c.260]

    Одновременный учет скоростей диффузионной стадии и стадии разряда — ионизации был впервые выполнен О. А. Есиным в 1940 г. [c.275]

    Химическая реакция может рассматриваться как мгновенная всякий раз, когда ее скорость очень велика по сравнению со скоростью диффузионных процессов например, ионная реакция, которая заключается только в обмене протона. Такие режимы могут встречаться при абсорбции кислоты сильной щелочью, например, при абсорбции НгВ растворами NaOH или при абсорбции основания сильной кислотой — при абсорбции ЫНз растворами Н2804. В разделе 5.5 будут обсуждены математические условия, при выполнении которых применима теория мгновенной реакции к любому конкретному случаю. [c.58]

    Из соотношения (5.61) видно, что профиль концентраций в напорном канале зависит от соотношения скорости проникания I и скорости диффузионного перемешивания, пропорциональной 0/6. Толщина пограничного слоя заведомо меньше половины высоты напорного канала в мембранных модулях всех типов, составляющей обычно от 0,2 до 1,0 мм. Поэтому в процессах разделения газовых смесей в модулях на основе асимметричных или композиционных мембран скорость проникания I при относительно невысоких давлениях исходной смеси на несколько порядков меньше, чем 0/8. Например, при разделении воздуха с помощью асимметричной поливинилтриме- [c.172]

    Чистые и особо чистые углеграфитовые материалы достаточно широко используется как при научных исследованиях, так и в промышленном производстве. Необходимая степень чистоты используеых материалов определяется конкретными условиями их применения и может бьггь достигнута методами термической или термохимической (ТХО) очистки. В частности, используемые для эмиссионных исследований спектральные углеграфитовые электроды различных марок могут быть получены только с использованием ТХО, предполагающей термообработку при температуре до 2700-3000°С в хлоро-фторной среде. Известно, что степень ТХО в значительной степени определяется скоростью диффузионных процессов в объеме очищаемого материала, в том числе скоростью обратной диффузии примесей в очищенный материал из окружающей среды в процессе охлаждения (так называемое обратное загрязнение). Таким образом, варьируя условия проведения ТХО, можно получить углеграфитовые материалы с различной степенью чистоты. [c.104]

    Если скорость гетерогенного процесса, например, растворения металла в кислоте, ограничена скоростью подвода кислоты, то С1 -> 0. Если скорость этого процесса ограничена скоростью диффузионного отвода образующейся соли в объем раствора, то с — концентрация насыщенного раствора соли в слое, непосредственно прилегающем к поверхности. Отрицательное значение плотности диффузионного потока указывает на его направление от поверхности твердого тела. Естественно, что для обоих этих случаев коэффициенты диффузии в уравнении (XXIII. 11) различны. [c.280]

    Скорости диффузионно-контролируемых реакций. Теоретическое )ассмотрение скорости бимолекулярной реакции, каждое столкновение эеагентов в которой приводит к образованию продукта, дает 26—28] следующее выражение для константы скорости реакции  [c.270]

    На практике редко встречаются простые электрохимические системы, для которых кинетические закономерности стадии разряда — ионизации можно было бы экспериментально изучить как вблизи равновесного потенциала, так и при значительном удалении от равновесного состояния. Это связано с различной зависимостью от потенциала диффузионной стадии электродного процесса и стадии разряда — ионизации. С одной стороны, после достижения предельного диффузи- -онного тока скорость диффузионной стадии не зависит от потенциала. С другой стороны, по мере удаления от равновесного потенциала скорость стадии разряда — ионизации очень резко возрастает. Таким образом, при токах обмена 10 5 А/см , даже при потенциалах, [c.239]


Смотреть страницы где упоминается термин Скорость диффузионная: [c.252]    [c.684]    [c.382]    [c.86]    [c.257]    [c.283]    [c.266]    [c.240]    [c.244]    [c.255]    [c.240]   
Динамика многофазных сред Часть 1 (1987) -- [ c.11 , c.18 ]




ПОИСК







© 2025 chem21.info Реклама на сайте