Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизация скорость теория процесса

    Диффузионная теория роста кристаллов не объясняет ряд явлений, происходящих при кристаллизации (различная скорость роста граней, дефекты, слоистость и пр.). Согласно этой теории, процесс растворения и кристаллизации обратимы, однако доказано, что это не так. Часто при одинаковых значениях движущей силы (разности концентраций) рост кристаллов протекает гораздо медленнее, чем растворение. [c.635]


    Наряду с теорией, рассматривающей образование коллоидных систем, как процесс кристаллизации, давно появились представления, согласно которым характер новой фазы зависит от скорости двух процессов — скорости упорядочения и скорости агрегирования молекул. Если скорость первого процесса больше, могут получаться кристаллические частицы. Когда быстрее протекает второй процесс, то возникает аморфная фаза. Такие взгляды были высказаны Ф. Габером и А. В. Думанским. В последние годы детальные исследования В. А. Каргина и 3. Я. Бересневой показали, что образование аморфных частиц при синтезе коллоидных систем скорее являет- [c.305]

    Различие в значениях экспериментально получаемых предельных пересыщений приводит к выводу, что линия Оствальда не является воспроизводимой характеристикой (константой) вещества. Отмечены факторы, изменение которых сказывается на пересыщении. С точки зрения теории процесса кристаллизации это объясняется неконтролируемой скоростью зародышеобразования (см. гл. 9). [c.100]

    Наряду с теорией, рассматривающей образование коллоидных систем как процесс кристаллизации, уже сравнительно давно существовали взгляды, согласно которым при быстром осаждении вещества из раствора могут быть получены коллоидные системы с аморфными частицами, лишь впоследствии приобретающими кристаллическое строение. Например, Габер еще в 1922 г, считал, что характер новой фазы зависит от скорости двух процессов — скорости упорядочения и скорости агрегирования молекул. Если скорости первого процесса больше, то могут получаться кристаллические частицы. Если, наоборот, быстрее протекает второй процесс, то возникает аморфная фаза. Аналогично высказывался, и [c.228]

    Наибольшее значение среди теории роста кристаллов имеют диффузионная и молекулярно-кинетическая. Согласно диффузионной теории Нернста процессы на поверхности раздела фаз протекают очень быстро, а скорость гетерогенных процессов лимитируется только диффузией. При кристаллизации поверхность кристалла покрыта тонким слоем малоподвижного раствора, в котором концентрация снижается от средней величины в растворе (с) до концентрации насыщения (со) на самой поверхности кристалла. Этот слой и создает основное сопротивление для диффузионного перехода кристаллизующегося вещества из пересыщенного раствора на поверхность растущего кристалла. Скорость отложения вещества на гранях кристалла описывается уравнением [c.364]


    Изучение пространственного распределения ПЦ представляет принципиальный интерес. При выяснении особенностей кинетики и механизма реакций в твердой фазе, количественном сопоставлении скоростей реакций в жидкой и твердой фазах, и т. д. в первую очередь необходимо учесть реальное распределение активных центров по объему. В твердых телах (а иногда и в достаточно вязких жидкостях) вследствие замораживания трансляционной подвижности пространственное распределение ПЦ может отражать либо гетерогенность распределения молекул, из которых образуются активные центры, либо гетерогенный характер процессов, приводящих к образованию радикалов. Начальная гетерогенность может возникнуть из-за макро- или микроскопического разделения фаз при кристаллизации, скопления дефектов, сферо-литной структуры полимеров и т. п. Причиной гетерогенного механизма образования активных центров является, например, зарождение их в приповерхностном слое и трековые эффекты при радиолизе. Представления об ионизации Б треках лежат в основе теории процессов радиолиза. Размеры и геометрия областей, в которых происходит ионизация, зависят от энергии и массы ионизирующей частицы, однако в любом случае образующиеся ионы или возбужденные молекулы распределены небольшими группами или роями вдоль пути ионизирующей частицы. Если стабилизирующиеся вторичные активные центры (радикалы и др.) образуются непосредственно в результате диссоциативной ионизации или рекомбинации первичных ионов, то их пространственное распреде- [c.201]

    Мне представляется, что статистическая механика, которая посвящена предсказанию поведения систем, состоящих из множества молекул, есть самая общая дисциплина из тех, на которых основывается наука о росте кристаллов. Однако мы начнем рассмотрение с термодинамики, которая позволит нам охарактеризовать предмет науки о росте кристаллов и установить движущие силы кристаллизации. Разумеется, термодинамика равновесного состояния не может дать ответа на интересующие нас вопросы какова скорость присоединения молекул к кристаллу при данном значении движущей силы и где они присоединяются, т. е. какова форма кристалла. На эти вопросы отвечает теория процессов переноса и теория кинетических явлений, происходящих на поверхности раздела фаз. [c.366]

    Центральным положением кинетической теории является предположение о том, что первичные процессы образования зародышей кристаллизации и роста кристаллов определяются скоростью нуклеации. Отсюда автоматически следует зависимость толщины пластин от температуры, хорошо согласующаяся с экспериментом. Основное внимание в кинетической теории уделяется вопросу образования зародышей кристаллизации и последующему процессу добавления в кристалл новых цепей. В частности. Прайс считает, что скорость роста монокристалла определяется скоростью когерентной нуклеации новых слоев кристалла на несклад- [c.207]

    Хотя теория Маккейба [2, 3] построена на прочной основе, при ее практическом применении встречается много трудностей. Для применения этой теории необходимо сделать следующие предположения а) все кристаллы имеют одну форму, б) рост кристаллов происходит инвариантно, в) движущая сила процесса— пересыщение— остается постоянным на протяжении всего периода роста, г) во время процесса не образуются новые зародыши кристаллизации, д) разделяющего процесса в кристаллизаторе нет, е) перемешивание равномерное, т. е. относительная скорость движения кристаллических поверхностей и жидкости постоянна. [c.219]

    Перенапряжение кристаллизации можно наблюдать лишь при малых перенапряжениях и на металлах с высоким током обмена, т. е. в таких условиях, когда стадия поверхностной диффузии действительно лимитирует скорость электродного процесса. Из теории монослойного осаждения следует, что при увеличении скорости осаждения металла возрастает число центров кристаллизации и это приводит к уменьшению торможений, связанных с поверхностной диффузией ад-ионов. В результате при более высоких перенапряжениях происходит смена лимитирующей стадии и скорость процесса определяется либо скоростью переноса электрона, либо скоростью диффузии из объема раствора. [c.332]

    А. Н. Щукаревым [136], а затем и другими авторами [137,138] была создана диффузионная теория скорости растворения, которую Нернст [139] позднее распространил на все гетерогенные процессы, в том числе и на кристаллизацию. Согласно классической диффузионной теории, процессы на поверхности раздела фаз протекают очень быстро, а скорость гетерогенных процессов лимитируется только диффузией. При кристаллизации, например, поверхность кристалла покрыта тонким слоем малоподвижного раствора, в котором концентрация снижается от средней величины в растворе С до концентрации насыщения Со на самой поверхности кристалла. Этот слой толщиной 6 и создает основное сопротивление для диффузионного перехода кристаллизующегося вещества из пересыщенного раствора на поверхность растущего кристалла. Таким образом, скорость отложения вещества на гранях кристалла можно выразить законом Фика  [c.84]


    На сегодняшний день отсутствует строгая количественная теория эффекта грани . Пожалуй, наиболее плодотворным является подход, учитывающий различие скоростей элементарных процессов ступенчатого (слоевого) роста в пределах грани и на соседних с ней участках поверхности фронта кристаллизации [173, 175], а также равновесных концентраций примеси в объеме кристалла и в его поверхностном слое на границе с расплавом [178]. Наличие избыточного переохлаждения обеспечивает гораздо более высокую скорость тангенциального роста зародышей нового слоя в пределах грани [c.103]

    Такой подход особенно эффективен при моделировании физикохимических процессов в полидисперсных средах с массовым взаимодействием составляющих в области малых параметров (реакторные гетерофазные процессы, кристаллизация, экстракция, абсорбция, ректификация, многие биохимические процессы и т. п.). Заметим, что при моделировании процессов в области больших параметров (давлений, скоростей, температур) могут быть использованы методы статистических теорий механики суспензий [14—16]. [c.15]

    Анализ промежуточной кинетики представляет известные трудности, так как в этом случае пересыщение у поверхности кристалла устанавливается из соотношения между сопротивлениями внешнего диффузионного переноса и процесса собственно кристаллизации подведенного к поверхности вещества. В статистической теории образования двумерных кристаллов выводится следующая зависимость скорости роста от пересыщения в кинетической области процессов  [c.176]

    Отмеченные выше различия между теорией и экспериментом требуют дальнейшего исследования. Можно сделать общий вывод наблюдаемая скорость кристаллизации меньше предсказываемой. В тех системах, которые были исследованы детально, заметное запаздывание кристаллизации начинается по достижении степени кристалличности порядка 25—30%. Более того, форма изотерм зависит от молекулярного веса (для фракций) чем выше молекулярный вес, тем более длителен процесс кристаллизации. [c.235]

    НИЯ в растворах бромата калия показывает, что классическая кинетическая теория нуклеации не описывает достаточно точно нестационарные процессы зародышеобразования (рис. 56, а—в). Временная зависимость скорости зарождения центров кристаллизации в растворах подтверждает стохастическую теорию кинетики нуклеации. [c.115]

    Из приведенных зависимостей видно, что оба выражения имеют максимум при определенном значении Т, Поскольку в выражение (14.1.1.6) АТ входит в степени 2, то максимум для должен быть сдвинут в область более низких температур. Для специально поставленных опытов закономерности процесса кристаллизации, предсказываемые теорией, подтверждаются на трифе-нилхлорсилане (см. рис. 14.1.1.4). К сожалению, для большинства веществ расчет V, и Vg дает только качественное согласие с экспериментом, что связано с неопределенностью значений коэффициентов и энергий акгивации, входящих в выражения (14.1.1.6) и (14.1.1.7). В действительности характер поведения многих веществ на стадии кристаллизации очень различается. Большое влияние на образование зародышей и рост кристаллов оказывают примеси. Присутствие механических примесей в виде мельчайших (микронных или субмикронных) взвешенных частиц в расплаве может сдвинуть процесс кристаллообразования в сторону меньшего переохлаждения. Последнее объясняется в [78] тем, что работа образования зародышей на готовой поверхности раздела меньше, чем работа образования в гомогенном объеме расплава. В то же время механизм образования зародышей в присутствии растворимых примесей совершенно иной. Растворенные примеси препятствуют возникновению зародышей, поскольку основное вещество в данном случае стремится оттеснить молекулы примеси и на границе зародыша их концентрация возрастает, что и требует уже большей величины переохлаждения. Различное влияние примесь оказывает и на скорость роста кристаллов. Присутствие примеси в расплаве, как правило, приводит к снижению скорости роста за счет возникновения дополнительного препятствия [81, 82]. Иногда она оказывает катализирующее действие [83] за счет дополнительного увеличения удельной поверхности растущего кристалла или за счет возникновения концентращюнного переохлаждения вблизи его поверхности. [c.304]

    Как было отмечено [44], превращение струи в волокно при формовании волокон из расплава или раствора может рассматриваться с позиции принципа эквивалентности физической кинетики полимеров, который сводится к тому, что термодинамическое поведение системы растянутых гибкоцепных макромолекул эквивалентно поведению системы жесткоцепных макромолекул в отсутствие внешних полей. Не останавливаясь здесь на теоретических доказательствах этого принципа [44], остановимся на практических выводах из этой теории. Принцип термодинамической эквивалентности обосновывает второй путь решения проблемы упрочнения. Он сводится к созданию условий высокой ориентации макромолекул любой жесткости и обеспечению быстрой фиксации распрямленных и ориентированных макромолекул, например путем переохлаждения или кристаллизации, для предотвращения процессов разориентации и образования складчатых структур. Для реализации этого пути применяют особые условия формования. Процесс эффективной ориентации переносится со стадии вытяжки сформованного волокна на стадию выхода раствора или расплава из отверстий фильеры. С этой целью формование ведут при больших скоростях сдвига. Судя по литературным данным, таким способом удается получать по-лиолефиновые и полиамидные волокна с прочностью до 2,5—3,5 ГН/м . Правда, сведений о промышленном внедрении этого метода пока нет. [c.80]

    При охлаждении жидкости ниже температуры плавления кристаллизация происходит не как мгновенное превращение вещества из жидкости в твердое тело, а в результате роста кристаллов из определенного числа центров или зародышей, происходящего с конечной скоростью. Для многих веществ скорость роста кристаллов высока и число зародышей, возникающих в единице объема, велико эти вещества не образуют стекол. Стеклообразующие материалы не склонны к легкой кристаллизации при охлаждении. Стеклообразование может быть вызвано малой скоростью роста кристаллов, малой скоростью образования зародышей или и тем и другим. В кинетической теории стеклообразования детально рассматривается процесс образования зародышей кристаллизации и процесс их роста и устанавливаются предельные значения скоростей этих процессов, которые нельзя превышать, если необходимо, чтобы жидкость при охлаждении образовывала стекло. Основы настоящей теории были сформулированы Стевели [1, 2], а наиболее полно она представлена в серии статей Тернбала и Коэна [3—5], которые мы в основном и цитируем. [c.39]

    В процессе кристаллизации пересыщенного раствора пли охлаждаемого расплава скорость этого процесса не подчиняется диффузиоино теории вследствие малой величины скоростей образования зародыше кристаллов и роста кристаллов. При кристаллизации важную роль играет скорость образования зародышей. Если скорость образования зародышей превышает скорость их роста, то получаются в большом количестве мелкие кристаллы. В обратном случае обесиечггвается получение крупных кристаллов. Соотношение этих скоростей зависит от температуры, степени пере- [c.184]

    Изучение механизма процесс.ов электроосаждения и анодного растворения металлов осложняется том, что п случае твердых металлов, наряду с двумя обычными стадиями всякой электрохимической реакции (перенос реагирующих частиц, разряд или ионизация этих частиц), имеется еще стадия включения разрядившегося атома в кристаллическую решетку металла. Изучение кинетики процессов ионизации и разряда иопов металлов па амальгамных элвктpo lдx позволяет устранить одну из этих стадий (кристаллизация) при использовании амальгам обеспечивается однородность поверхности и легко достигается ес чистота кроме того, при работе с амальгамами можно изучать зависимость скорости анодного процесса от концентрации металла в амальгаме, т. е. получать более полную характеристику анодного процесса, чем в случае твердого металла. Основная трудность изучения механизма стадии разряда — ионизации состоит в том, что для многих металлов ее скорость настолько велика, что в обычных условиях скорость всего процесса лимитируется стадией переноса вещества. Тем не менее, в настоящее время можно считать доказанным, что для значительпопз числа металлов ток обмена имеет конечную величину. Путем применения новых экспериментальных методов к изучению электрохимической кинетики, а именно переменноточного метода [1—3], нестационарных методов с осциллографической записью изменения нотенциала электрода после включения тока постоянной плотности [4—7] или изменения плотности тока при постоянном потенциале электрода [8] в начальной стадии процесса, а также метода радиоактивных индикаторов [9, 10] для ряда систем были измерены величины тока обмена. Результаты изучения зависимости тока обмена от концентрации амальгам и растворов [1, 3,9, 10] хорошо согласуются с теорией замедленного разряда. [c.116]

    Дислокационная теория росаа кристаллов из растворов [59]. Модель предыдущего раздела основана на предположении о том, что полную скорость диффузии определяет поверхностная диффузия модель удовлетворительным образом описывает кинетику роста кристаллов из газовой фазы в случае, когда градиент концентрации в объемной фазе можно считать пренебрежимо малым по сравнению с разностью концентрации в непосредственной близости от кристалла и равновесной концентрации. В случае, когда градиент концентрации в объемной фазе велик, процессом, определяющим полную скорость диффузии, является объемная диффузия. Этот случай, как правило, приходится рассматривать при кристаллизации из растворов (или из газовой фазы в присутствии инертного газа) [60]. [c.272]

    На основе диф зионной теории роста кристаллов рассяютрена кинетика кристаллизации парафиновых углеводородов при охлаждении парафинового дистиллята. Рост кристаллов парафина по длине кристаллизатора описывался системой дифференциальных уравнений, которая имела аналитическое решение. Значения отдельных параметров процесса определены исходя из свойств парафинового дистиллята и парафина применительно к проиышленноцу кристаллизатору. Расчеты по заданной программе выполнялись на ЭВИ "иинск-22". Установлены закономерности изменения по длине кристаллизатора толщины диффузионного слоя, поверхности кристаллов парафинов, коэффициента массообмена, пересыщения. Показано, что скорость роста существен- [c.151]

    Параллельная укладка цепей уменьшает величину А5, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей"имеет меньшее значение. С другой стороны, ориентация не оказывает никакого влияния наХэнтальпию аморфного каучука. Поэтому [величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. [c.60]

    Скорость роста идеально гладкой грани пропорциональна частоте появления на ней двумерных зародышей. Этот этап является весьма чувствительным к пересыщению, и вероятность образования нового слоя при пересыщениях ниже 25—50% совсем ничтожна. Дальнейшее разрастание слоя происходит быстро и от пересыщения не зависит. Однако в реальных кристаллах рост кристалличеекой поверхности становится непрерывным и осуществляется при ма/гых пересыщениях порядка 1 % и ниже. Это противоречие между теорией и практикой объясняет так называемая дислокационная теория. В настоящее время эти представления о механизме и кинетике роста кристаллов из пара являются общепринятыми. Согласно дислокационной теории винтовые дислокации, всегда присутствующие в реальном кристалле и выходящие на растущую поверхность, обеспечивают наличие готовых ступенек. Частицы, адсорбировапные поверхностью, свободно по ней перемещаются и, наконец, присоединяются к имеющемуся дислокационному выступу — ступеньке. В процессе кристаллизации ступеньки не зарастают, а сохраняются в новых слоях. Поэтому вся кинетика роста определяется движением ступенек и нет необходимости в появлении новых двумерных зародышей. При таком механизме роста полностью заполненных плоскостей нет, присоединение частиц происходит по спирали. -Для образцов с достаточно ( свершенной структурой плотность дислокаций, выходящих на поверхность, достигает 10 Поэтому рост такой поверхности происходит во многих точках одновременно и микрорельеф ее оказывается не гладким, а шероховатым. [c.60]

    Таким образом, скорость кристаллизации единичного кристалла увеличивается с повышением отношения 6/ . А это возможно, когда толшина диффузионного слоя соизмерима с линейным размером кристалла. На рис. 28 показано, как резко увеличивается скорость кристаллизации, когда уменьшается размер кристалла. Однако вследствие того, что диффузионная теория рассматривает процессы роста и растворения частиц как взаимообратимые, растворение кристаллов будет описываться теми же уравнениями, что и кристаллизация, но с обратным знаком. Поэтому относительная скорость роста кристаллов будет равна относительной скорости растворения, что не соответствует условию рекристаллизации (4.16). [c.88]

    Рассмотрим аргументы, выдвинутые Маршаллом и Томпсоно м в обоснование своей точки зрения. Исходным моментом их теории были изотермические диаграммы нагрузка — деформация, построенные для полиэтилентерефталата на рис. 11.13. Далее предполагалось, что процесс растяжения с высокой скоростью осуществляется в адиабатических условиях. Зависимость нагрузки от деформации подсчитывалась для адиабатического растяжения, исходя из предположения, что вся работа деформирования, производимая приложенной силой, переходит в тепло, рассеиваясь в образце, т. е. эта работа не затрачивается ни на накопление упругой энергии, ни на фазовые переходы, связанные с кристаллизацией полимера при растяжении. Практически расчет выполнялся для каждых 10% удлинения путем подсчета повышения температуры, обусловленного тепловыделениями при такой деформации проверка правильности расчета состояла в вычислении полной работы деформирования и сравнении ее с затратами энергии на суммарное повышение температуры образца. [c.267]

    Как известно, еще Гиббс в своем замечательном трактате о равновесии в гетерогенных системах выяснил факторы, определяющие стабильность пересыщенных систем. Однако лишь в 1926 г. Фольмер на этой основе построил свою известную теорию образования новых фаз и роста кристаллов, введя понятия о трехмерных и двумерных зародышах и связав их возникновение флуктуационным путем с проблемами скорости зародышеоб-разования и линейной скорости кристаллизации. Рассмотрев работу образования этих зародышей как энергию активации соответствующих процессов, Фольмер открыл путь количественной интерпретации фазообразования и кристаллизации. [c.4]

    Что касается твердых частиц, то здесь вопрос о поверхностном натяжении еще более сложен вследствие трудности его измерения, даже для больших кристаллов. Тем не менее и в этом случае используется то же теоретическое приближение 7, и в результате снова подтверждается, что критический размер центра кристаллизации является величиной порядка 100 ионов, откуда с необходимостью вытекает вывод, что скорость образования центров кристаллизации является функцией высокого порядка от концентрации. С этой теорией согласуются взгляды Тернбулла 1 , который указывает, что индукционный период при осаждении сульфата бария имеет скорее кажущийся, чем реальный характер, и что он соответствует периоду очень медленного роста, лимитируемому малой поверхностью. Тернбулл считает, что центры кристаллизации образуются в момент смешивания реактивов в местах, где концентрация оказывается выше критической концентрации образования центров кристаллизации. Различная величина масштабного фактора, о котором говорилось выше, объясняется недостаточной воспроизводимостью процесса смешивания. Относительно долгий кажущийся индукционный период при гомогенной генерации осадителя можно объяснить с помощью теории, утверждающей, что рост частиц происходит только при наличии посторонних центров кристаллизации. Чтобы объяснить получение одинакового количества частиц в осадке, которое наблюдали О Рурк и Джонсон, по-видимому, необходимо предположить, что в данном объеме раствора имеется постоянное количество посторонних центров кристаллизации, независимое от концентрации растворенного вещества в области очень разбавленных растворов. Разные результаты, полученные различными исследователями, по-видимому, объясняются разным количеством посторонних центров кристаллизации. [c.154]

    Разногласия по поводу крупных центров и небольших центров приводят к проблеме большого или малого порядка зависимости скорости образования центров кристаллизации от пересыщения. Если образование центров является процессом высокого порядка (пропорционально, например, С то он будет происходить только в том случае, если местная концентрация превысит критическую. В другом случае рост кристаллов может начаться на посторонних центрах. Чтобы подчеркнуть значение посторонних центров, Тернбулл приводит такой факт часто маленькие капли жидкости или водных растворов могут быть переохлаждены значительнее, чем большие количества тех же жидкостей это происходит потому, что наличие даже одного постороннего центра в небольшой капле жидкости мало вероятно. Казалось бы, на основе тщательного изучения формы кривой электропроводности в период роста кристаллов можно сделать четкое заключение о механизме кристаллизации. Однако обе теории сходятся на том, что в течение индукционного периода происходит медленный рост зародышей и что в конце этого периода значительная часть свободных ионов из раствора исчезает, [c.156]

    На основании этих общих положений может быть развита формальная теория кинетики кристаллизации полимерных систем. Наблюдаемая на опыте возможность совмещения изотерм простым сдвигом и вытекающее из нее постоянство температурного коэффициента скорости кристаллизации дает возможность полагать, что процессы нуклеации и роста зародышей происходят параллельно. В свою очередь, обычно наблюдаемое линейное увеличение радиуса растущего сферолита позволяет заключить, что рост контролируется диффузионными процессами, протекающими на границе раздела сферолит — расплав. Подобные же результаты, при введении этих допущений, вытекают также и из анализов Джонсона, Мела [20] и Аврами [21]. Однако в теории для мономерных веществ содержится необходимое предположение о том, что фазовое превращение происходит до конца. В полимерах абсолютная кристалличность если и достижима, то очень редко. Поэтому необходимо при теоретическом рассмотрении учитывать факторы, мешающие возникновению и развитию кристалличности. Это обстоятельство во многих [c.227]

    Кинетическая теория также базируется на расчетах гиббсовой энергии системы, однако предполагается, что увеличение периода складывания возможно при любой температуре ниже Тпл, при которой молекулы обладают достаточной подвижностью, в том числе и при Гкр- Действительно, утолщение ламелей во времени наблюдалось при изотермической кристаллизации (Wi ks, см. [39, гл. 6]). По кинетической теории образование складки происходит через образование первичного зародыша (скорость зародышеобразования зависит от степени переохлаждения). Критическая (устойчивая) длина зародыша, отвечающая состоянию с минимальной гиббсовой энергией, определяет длину складки. Рост кристалла происходит за счет присоединения новых молекул к растущей поверхности, а скорость роста определяется возможностью переноса к растущей грани еще незакристаллизовавшегося материала. На различных стадиях этого процесса на уже завершенных гранях роста [c.34]

    Особенностью этой стадии процесса кристаллизации является образование ламелярных отростков со складчатыми цепями, которые кинетически более предпочтительны, чем кристаллы с выпрямленными цепями, в то время как кристаллы, образованные вытянутыми цепями, термодинамически более стабильны, чем кристаллы со складчатыми макромолекулами. Это полностью согласуется с важным результатом Вундерлиха и др. [18], установивших, что зародыши кристаллов с вытянутыми цепями не инициируют роста кристаллов аналогичного строения. Образование пачечного зародыша связано с необходимостью преодолеть более высокий барьер свободной энергии образования зародыша ЛОб, чем при образовании зародыша со складчатыми цепями. Это обусловлено тем, что свободная поверхностная энергия, связанная с удалением цепей с поверхности (001) пачечного зародыша, больше, чем свободная поверхностная энергия грани, содержащей складки цепей. Поэтому образование пачечных зародышей менее вероятно. Вторым фактором, определяющим в классической теории [17, 18] скорость образования зародышей и скорость их роста в стационарном состоянии, является свободная энергия активации АОа процесса переноса через поверхность раздела жидкость — кристалл. При действии гидродинамических сил значение свободной энергии активации может быть уменьшено на величину АОц, [c.119]

    ЗЕсли возникшие центры кристаллизации влияют на скорость образования последующих центров [10], то общи поток моментов зарождения иредставляет собой с математической точки зрения ветвящийся марковский случайный процессе, описанный в соответствующих руководствах по теории случайных процессов [125, 126]. [c.35]

    Таким образом, наш подход к рассмотрению кинетики нуклеации с учетом всех допуш бний, принимаемых в классической теории, в принципе должен дать те же результаты, поскольку физической моделью процесса, принятой нами, является теория гетерофазных флуктуаций Френкеля [29]. Однако более корректная постановка задачи, другая методика решения и учет неравновесных начальных условий позволяют получить некоторые новые данные, а также в ряде случаев провести более четкий и простой анализ, допускаюш ий возможность дальнейшей разработки проблемы. Выведенные в стохастической теории нуклеации выражения временной зависимости скорости зарождения центров кристаллизации имеют более обш ий вид по сравнению с классической теорией, так как допускают существование зависимости I t) в виде монотонно убывающей функции, экстремальной функции и монотонно возрастающей функции, не равной нулю в начале процесса [154, 155]. [c.54]

    Точное определение характеристик нестационарного процесса нуклеации в зависимости от начального состояния процесса и формы энергетического барьера нуклеации имеет большое значение для дальнейшего развития теории многобарьерных процессов нуклеации. В частности, как показано в 4, вид временной зависимости скорости зарождения центров кристаллизации и длительность периодов нестационарности оказывают существенное влияние на вероятность образования метастабильных кристаллических модификаций из расплавов и растворов. [c.55]

    Таким образом, влияние пересыщения на скорость зарождения центров кристаллизации можно изучать, определяя любые из предложенных зависимостей /(С). Однако для сравнения результатов с теорией нуклеации необходим комплексный анализ всей функции /(С, t) для разных условий кристаллизации. Другая характеристика нестацибнарного процесса нуклеации — период нестационарности, который для исследуемых растворов монотонно возрастает с уменьшением пересыщения (см. рис. 50, а, б). [c.112]


Смотреть страницы где упоминается термин Кристаллизация скорость теория процесса: [c.230]    [c.54]    [c.12]    [c.202]    [c.15]    [c.108]    [c.184]    [c.100]    [c.189]    [c.106]    [c.114]   
Основные процессы и аппараты химической технологии Издание 4 (низкое качество) (1948) -- [ c.587 ]




ПОИСК





Смотрите так же термины и статьи:

Кристаллизация процесс

Кристаллизация теория

Процесс скорость



© 2024 chem21.info Реклама на сайте