Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая

    Типы нуклеиновых кислот. В 1930 г. были определены два типа нуклеиновых кислот — ДНК и РНК, различающиеся химическим составом, молекулярной массой, сложностью структуры молекул, а также выполняемыми функциями в организме. Название нуклеиновых кислот обусловлено присутствием в кислоте углевода если в состав нуклеиновой кислоты входит рибоза, то она называется рибонуклеиновая кислота (РНК), а если входит дезоксирибоза, то нуклеиновая кислота называется дезоксирибонуклеиновая (ДНК). Кроме углеводного компонента, отдельные типы нуклеиновых кислот различаются составом азотистых оснований и структурой молекулы. [c.216]


    И. М. Сисакян обнаружил в хлоропластах листьев сахарной свеклы и других растений значительные количества нуклеиновых кислот, причем, наряду с рибонуклеиновой кислотой, занимающей основное место, им впервые установлено также присутствие дезоксирибонуклеиновой кислоты. В зависимости от вида растения, возраста и других причин содержание РНК колеблется от 0,5 до 3,57о (от сухого веса). Оно изменяется в ходе развития растения, в частности, хлоропласты молодых листьев содержат РНК в 2—3 раза больше, чем старые. При старении листьев изменяется также качественный состав РНК, главным образом за счет возрастания отношения пиримидиновых оснований к пуриновым. Изменения содержания РНК хлоропластов в онтогенезе листьев протекают параллельно изменениям содержания белков. Эти данные согласуются с общепринятыми в настоящее время представлениями об участии РНК в синтезе белков. [c.106]

    Рибонуклеиновые кислоты (сокращенно РНК) построены из рибо-нуклеозидов, связанных в положении 3,5 сложноэфирной связью с фосфорной кислотой. Дезоксирибонуклеиновые кислоты (которые сокращенно называют ДНК) построены из дезоксирибонуклеозидов, также связанных в положении 3,5 сложноэфирной связью с фосфорной кислотой. Вследствие этого нуклеиновые кислоты относятся к классу полиэфиров. [c.358]

    Функции, выполняемые ДНК и РНК в организме, а также их химические и физико-механические свойства различны. Помимо химического строения на свойства нуклеиновых кислот и их функции в организме весьма существенное влияние оказывают форма макромолекулы и надмолекулярные структуры, которые для рибонуклеиновых и дезоксирибонуклеиновых кислот также различны. [c.362]

    Количественное определение нуклеиновых кислот. Принцип метода основан на выделении рибонуклеиновых (РНК) и дезоксирибонуклеиновых (ДНК) кислот и на дальнейшем их анализе прямыми и косвенными методами. К прямым методам относятся такие, которые включают гидролиз нуклеиновых кислот с последующим выделением из гидролизатов пуринов и пиримидинов и определение их хроматографическим методом. Хроматография позволяет производить точный микроанализ нуклеиновых кислот. Исследование пуринов и пиримидинов проводят в ультрафиолетовом свете, наблюдая флуоресценцию пятен на хроматограммах или в экстрактах, полученных из соответствующих участков хроматограмм. Кроме хроматографического метода, применяют также способ электрофореза на бумаге. [c.60]


    Недавно изучалась также возможность усвоения кукурузой нуклеиновых кислот как источника фосфорной кислоты. Опыты были поставлены по методу фракционированного питания (на 3 часа ежесуточно корни погружали в растворы рибонуклеиновой или дезоксирибонуклеиновой кислот, а остальное время содержали на питательной смеси без фосфора). Кукуруза не усваивала фосфора этих кислот. [c.235]

    Азот — один из основных элементов, необходимых для растений. Он входит во все простые и сложные белки, которые являются главной составной частью протоплазмы растительных клеток. Азот также находится в составе нуклеиновых кислот (рибонуклеиновая — РНК и дезоксирибонуклеиновая — ДНК), играющих исключительно важную роль в обмене веществ в организме. Азот содержится в хлорофилле, фосфатидах, алкалоидах и многих других органических веществах растительных клеток. [c.171]

    Изучение взаимоотношений между генами и плазма-генами, а также между генами и микросомами представляет собой ту область, где две науки — генетика и эмбриология —смыкаются наиболее тесно. И именно здесь выходят на сцену еще два очень важных фактора. Это — две нуклеиновые кислоты, которые обычно обозначают как ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Они всегда присутствуют в тех участках клетки, где происходит интенсивное образование новых веществ, и весьма вероятно, что та или иная нуклеиновая кислота необходима для образования любого белка. По-видимому, нет сомнения в том, что ДНК — составная часть хромосом, в которых заключены гены, — каким-то образом тесно связана с самими генами, которые содержат белок. РНК всегда встречается в большом количестве в той области цитоплазмы, где происходит быстрый синтез белка. Микросомы, например, содержат большое количество РНК и [c.225]

    В опытах М. Я. Школьника и А. Н. Маевской, проведенных с фасолью и подсолнечником при исключении бора из питательного раствора, получено значительное снижение содержания рибонуклеиновой кислоты в верхушках стеблей и в корнях растений, а также снижение содержания дезоксирибонуклеиновой -КИСЛОТЫ в тех же органах у подсолнечника . Основываясь-на полученных данных, авторы подчеркивают очень важную роль бора в нуклеиновом обмене в растениях и приходят к выводу, что причиной отмирания точек роста при борном голодании растений являются нарушения в нуклеиновом обмене. [c.36]

    Нуклеиновые кислоты представляют собой линейные полимерные молекулы, состоящие из чередующихся углеводных и фосфоди-эфирных остатков. Фрагменты углеводов существуют в молжулах нуклеиновых кислот в- фураиозиой форме и связаны по атому С-1 с остатками пиримидиновых или пуриновых оснований (общее рассмотрение структуры нуклеиновых кислот см. [45]). Дезоксирибонуклеиновая кислота (ДНК) присутствует во всех живых клетках и служит носителем генетической информации. В качестве углеводного остатка в молекуле ДНК присутствует о-дезоксирибоза, а в качестве оснований — тимин. цитозин (пиримидиновые основания) и аденин, гуанин (пуриновые основания) (рис. 7.14, а). Определенная последовательность расположения пиримидиновых и пуриновых оснований в цепи ДНК связана с конкретной генетической информацией. Рибонуклеиновые кислоты (РНК) также представляют собой неразветвлеиные полимерные молекулы, отличающиеся от молекул ДНК тем, что содержат вместо дезоксирибозы о-рибозу (с группой ОН при атоме С-2) и урацил вместо тимина. РНК выполняют роль матриц для синтеза белка. [c.317]

    Специфическую последовательность аминокислот в белках определяют две встречающиеся в природе нуклеиновые кислоты— дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК), — также имеющие цепочечное строение (структура и свойства этих кислот рассмотрены в гл. XVII—XIX). В клетке содержится набор различных молекул нуклеиновых кислот. ДНК представляет собой генетический материал и находится главным образом в хромосомах последовательность входящих в ее состав оснований служит генетическим кодом клетки. Две различные молекулы ДНК можно сравнить с двумя книгами, которые внешне совершенно одинаковы, но тем не менее одна из них повествует, скажем, о слонах, а другая — о муравьях. Если учесть, какое множество признаков должно быть закодировано в ДНК, то станет ясным, почему в клетке может существовать много разных видов ДНК. В клетке имеется также несколько различных видов РНК. Последняя содержится преимущественно в цитоплазме — там, где происходит процесс синтеза белка. Вопрос о том, какую роль играют разные виды РНК в синтезе белка, рассмотрен в разд. 4 гл. XX. [c.20]

    К рассматриваемому классу поликислот относятся также многие полимеры биологического происхождения. Здесь надо назвать в первую очередь нуклеиновые кислоты — дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК), передающие генетическую информацию. К краткому рассмотрению их конфигурационных свойств мы вернемся в следующем параграфе. Поликислотами являются также многие мукополисахариды, в частности гиалуроновая кислота, и водорослевые полисахариды альгиновая и каррагиновая кислоты, на которых были выполнены многие исследования гидродинамических свойств полиэлектролитов (см., например, [26, 27]). [c.66]


    В зависимости от строения пентозы, входящей в состав нуклеиновых кислот, эти последние делятся на два типа рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК). Пока нет никаких данных о существовании нуклеиновых кислот, которые содержали бы одновременно два типа пентозы [256]. Рибонуклеиновая кислота идентична дрожжевой нуклеиновой кислоте старых авторов, а дезоксирибонуклеиновая кислота — тимонуклеиновой кислоте , выделенной из зобной железы. Старые обозначения оказались непригодными, так как выяснилось, что дрожжи содержат также и небольщие количества дезоксирибонуклеиновой кислоты. Отношение РНК/ДНК в дрожжах колеблется от 30 до 50 [265]. Ядра животных и растительных клеток содержат главным образом ДНК, цитоплазма же этих клеток — РНК [266, 267] (см. гл. XVII). [c.260]

    При половом воспроизведении конъюгирующиеся гаплоидные клетки с половинным набором хромосом комбинируют в клетке-плоде полный их набор за счет отцовской и материнской половых клеток. Таким образом, оплодотворенная клетка получает наследственную информацию, содержащуюся в структуре нуклеиновых кислот хромосом, с обеих сторон и в процессе митотического деления передает ее каждой дочерней клетке плода. Конечно, — только грубая схема, первые черты представления о сложнейших и интимнейших процессах жизни — процессах воспроизведения и синтеза белков, процессах воспроизведения организмов, которые (процессы) взаимно зависимы, но между которыми нельзя ставить знак равенства. Я не пытаюсь описать здесь также разную роль в этих процессах двух основных типов нуклеиновых кислот — рибонуклеиновых и дезоксирибонуклеиновых. [c.23]

    Как было указано ранее, нуклеиновые кислоты делятся на дезоксирибонуклеиновые (ДНК), являюцщеся полимерами (а точнее продуктами поликонденсации) дезоксирибонуклеотидов, и рибонуклеиновые (РНК) — полимеры рибонуклеотидов. Строение, а также физико-химическая характеристика и биологическая функция ДНК и РНК различны, и поэтому эти вопросы будут рассматриваться отдельно для каждого вида полимера. [c.246]

    Существуют два различных типа нуклеиновых кислот —дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК представляет собой генетический материал большинства организмов. В прокариотических клетках, кроме основной хромосомной ДНК, часто встречаются вне хромосомные ДНК — плазмиды. В эукариотических клетках основная масса ДНК расположена в клеточном ядре, где она связана с белками в хромосомах. Эукариотические клетки содержат ДНК также в различных органел-лах (митохондриях, хлоропластах). Что же касается РНК, то а клетках имеются матричные РНК (мРНК), рибосомные РНК (рРНК), транспортные РНК (тРНК) и ряд других кроме того, РНК входят в состав многих вирусов. [c.296]

    Нуклеиновые кислоты — молекулы, состоящие из отдельных мононуклеотидов. Функцией нуклеиновых кислот является запись и запоминание (хранение) биологической информации. Особенно важны два типа нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в ядре клетки и является главной информирующей молекулой клетки. Таким образом, функцией ДНК является снабжение клетки информацией для точного воспроизводства каждого вида клетки, включая синтез необходимых ферментов, а также дополнительного количества молекул ДНК. Иными словами ДНК участвуют в процессах деления клетки и передаче наследственных признаков. Следует отметить, что по своей структуре ДНК каждого из организмов отличаются друг от друга. Молекулы ДНК представляют собой длинные цепи, находящиеся в виде спаренных или двухнитяных спиралей. Длина двух таких молекул составляет примерно 20 А. Молекулярный вес ДНК колеблется в пределах 100 000 000—4 000 000 000. Каждое из звеньев цепи ДНК составляют четыре различных повторяющихся мононуклеотида. Такая последовательность называется кодом. Строение нитей ДНК представлено на схеме 16. Следует отметить, что в скелете [c.333]

    Гель-хроматографию особенно целесообразно применять в тех случаях, когда необходимо очень быстро отделить высокомолекулярные компоненты от низкомолекулярных. На специально подготовленной колонке (3X6 сл) с сефадексом 0-25 (грубым) Эрлан-деру [25] удалось всего за 2 мин полностью отделить рибонуклеазу от воды, содержащей тритий. Этот быстрый аналитический метод позволяет изучить кинетику обмена трития и на этом основании сделать выводы о степени спирализации растворенного белка. Несколько позднее аналогичная методика была успешно использована при исследовании вторичной структуры растворимых рибонуклеиновых кислот [26] и дезоксирибонуклеиновых кислот [27]. Конечно, нуклеиновые кислоты также могут быть модифицированы химическим путем, например действием диазотированной сульфаниловой кислоты [28]. Избыток реагента и побочные продукты реакции удаляют на сефадексе 0-50. [c.146]

    Мейсель и Корчагин [12] на выделенных из клеток нуклеиновых кислотах и их производных показали, что акридиновый оранжевый, связываясь с дезоксирибонуклеиновой кислотой (ДНК) или ДНК-протеидом, придает им ярко-зеленую люминесценцию, в то время как комплексы этого флуорохрома с рибонуклеиновой кислотой (РНК) и ее протеидом люмипе-сцируют красным светом. Такие соотношения ими были обнаружены в случае прижизненного флуорохромирования клеток. Акридиновый оранжевый в этих условиях оказался весьма полезным цитохимическим реактивом. Аналогичные данные на фиксированных объектах были получены Шюммельфедером [6], а также Берталанфи [47] и Армстронгом [48]. Различная степень связывания акридинового оранжевого с ДНК и РНК зависит, по-видимому, от различной степени полимеризации этих кислот. [c.315]

    Установлено также, что нуклеиновые кислоты играют большую роль в биосинтезе белка (Б. В. Кедровский, Браше, Касперсон). Содержание рибонуклеиновых кислот (РНК) или скорость их обновления в клетках больше в тех пунктах, где имеет место интенсивный синтез белка. В то же время, по-видимому, дезоксирибонуклеиновые кислоты (ДНК) каким-то образом определяют специфичность этого синтеза. [c.328]

    Электрофоретически можно разделять также и нуклеиновые кислоты, например, отделять рибонуклеиновую кислоту от дезоксирибонуклеиновой. Используя гель в качестве поддерживающей среды, можно увеличить эффективность разделения, так как размеры молекул рибонуклеиновой и дезоксирибонуклеиновой кислот сильно отличаются друг от друга. [c.104]

    Первый нуклеотид, инозиновая кислота (по-гречески — мышечная ткань), был выделен Либихом [2] в 1847 г. из мясного экстракта отчасти как результат полелп1ки, поднятой Берцелиусом по поводу наличия креатина в сыром и вареном мясе). С тех пор было выделено большое число мононуклеотидов, как правило, 5 -фосфаты, хотя в яде тигровых змей и родственных видов был найден также аденозин-З -фосфат 13]. Эти соединения выделяют прямой экстракцией тканей или организмов 14—9], в которых они обычно присутствуют в небольших количествах в качестве промежуточных соеди-нени1 обмена. Однако основным источником мононуклеотидов являются их полимерные производные, нуклеиновые кислоты. При щелочном гидролизе в мягких условиях [10, 11] рибонуклеиновой кислоты образуется смесь 2 - и З -фосфатов нуклеозидов, которую можно легко разделить с помощью ионообменной хроматографии 112], Для выделения аналогичных 5 -эфиров требуется применение ферментативного гидролиза, как правило, с использованием фосфо-диэстеразы змеиного яда 113, 14]. Подобная ферментативная обработка дезоксирибонуклеиновой кислоты после предварительной обработки дезоксирибонуклеазой приводит к дезоксинуклеозид-5 -фосфатаы [15—17]. Очищенная диэстераза змеиного яда значи- [c.123]

    В то время было известно, что рибонуклеиновые кислоты могут быть гидролизованы щелочью до мононуклеотидов, которые, как тогда считали, были исключительно нуклеозид-3 -фосфатами. Общий план строения нуклеиновых кислот с 2 —З -фосфодиэфирными связями был предложен Левиным и Типсоном [71], причем было сделано допущение, что 2 -связь гораздо менее устойчива, чем З -фос-фоэфирная связь, и обусловливает таким образом образование при щелочном гидролизе исключительно нуклеозид-З -фосфатов. Однако, когда рибонуклеиновую кислоту обработали змеиным ядом (который содержит фосфомоноэстеразу, специфичную для нуклеозид-З -фосфатов), то получили неорганический фосфат и нуклеозиды [72, 73]. Далее, изучение рибонуклеиновой кислоты методом дифракции рентгеновских лучей, проведенное Астбери, позволило предположить, что основной межнуклеотидной связью является скорее 2 —5 или 3 —5, чем 2 —3 [74]. С другой стороны, прямого химического доказательства наличия 5 -фосфатной связи не существовало, и отсутствие 5 -фосфорилированных производных в кислых гидролизатах рибонуклеиновой кислоты, несмотря на их известную стабильность, действительно находилось в явном противоречии с предположением о 2 (или 3 ) — 5 -межнуклеотидной связи. Устойчивость дезоксирибонуклеиновой кислоты (неизбежно 3 —5 -связанной) по отношению к щелочи в противоположность неустойчивости рибонуклеиновой кислоты также указывало, как считали в то время, на различие в типах связи. В противоположность этому при действии панкреатической рибонуклеазы на рибонуклеиновую кислоту получается смесь олигонуклеотидов, устойчивых к перио- [c.372]

    Проблема основной схемы строения нуклеиновых кислот была решена в 1952 г. Брауном и Тоддом, которым удалось примирить казавшиеся противоречивыми данные [81]. Предварительно в исследованиях с применением радиоактивного фосфора было показано, что катализируемая кислотой изомеризация а- или Р-глицерофосфа-тов впутримолекулярна и проходит через образование промежуточного циклического фосфата [82]. Было также известно, что, хотя а-глицерофосфат устойчив к щелочи, его метиловый эфир при гидролизе щелочью или разбавленной кислотой легко превращается в метанол и смесь а- и Р-глицерофосфатов. Для объяснения значительно меньшей устойчивости таких диэфиров фосфорной кислоты, содержащих остаток глицерина (или этиленгликоля), по сравнению с простыми фосфодиэфирами, не имеющими смежной гидроксильной группы, было постулировано образование промежуточного три-этерифицированного ортоэфира циклофосфата [83, 84]. Фоно предположил (в 1947 г.), что быстрая деградация рибонуклеиновой кислоты при обработке щелочью, в противоположность устойчивости дезоксирибонуклеиновой кислоты, зависит от присутствия цис-гидроксильной группы при атоме Сг рибозного остатка (отсутствую- [c.373]

    Химический состав вирусов с мелкими частицами отличается простотой они содержат белки и нуклеиновую кислоту, но почти лишены свободных углеводов и липидов. Большие же вирусные частицы имеют значительно более сложный состав и включают не только липиды, но также и различные ферменты [125]. Прн анализе Т-2 бактериофага Es heri hia oli было найдено, что он содержит 51% белка, 5—6% липндов и 40% нуклеиновой кислоты в состав нуклеиновой кислоты входит /е рибонуклеиновой кислоты и /б дезоксирибонуклеиновой кислоты [126]. [c.399]

    Подробно изучался обмен фосфора в нуклеиновых кислотах и, в частности, в дезоксирибонуклеиновой кислоте, так как она представляет особый интерес как характерная составная часть белков клеточных ядер,Вхождение в нее из неорганических фосфатов возможно как при ее синтезе, так и в результате биохимических процессов круговорота азота, при которых содержание этой кислоты может и не увеличиваться. Различить эти два пути внедрения фосфора в дезоксирибонуклеиновую кислоту нелегко, так как при обычно применяемых дозах Р она его усваивает очень немного. Это приводило в некоторых работах к противоречивым выводам. Тем не менее, сейчас можно, по-видимому, считать доказанным, что дезоксирибонуклеиновая кислота клеточных ядер также принимает участие в общем белковом метаболизме, хотя до применения меченых атомов преобладала обратная точка зрения. Обновление дезоксирибонуклеиновой кислоты в печени крыс было доказано путем введения животным больших доз Р [1456] и в растущих эмбрионах — из сравнения изменений содержания Р в этой кислоте и в рибонуклеиновой кислоте [1457]. В альвеолярной ткани легкого белой крысы усвоение неорганического фосфора дезоксирибонуклеиновой кислотой происходит вдвое быстрее, чем ее новообразование, достигая 8—10% в день [1458]. Найденная при помощи большая разница в скоростях метаболизма обеих кислот подтверждена также опытами Гевеши с сотр. [1454, 1455] и др. с радиоактивным фосфором. [c.501]

    Определение молекулярного веса нуклеиновых кислот (полинуклеотидов) седиментационным методом на ультрацентрнфуге дает величины от 200 000 и менее до нескольких миллионов. При полном гидролизе нуклеиновых кислот ядра клетки уста1Ювлено наличие трех групп составных частей этих так называемых дезоксирибонуклеиновых кислот (они обычно обозначаются как ДНК). Это — фосфорная кислота, D-2-дез-оксирибоза (т, е. й-рибоза, у которой второй углеродный атом несет второй водородный атом вместо гидроксила, кн. I, стр. 432) и смесь четырех гетероциклов двух пуриновых — аденина и гуанина и двух пиримидиновых— тимина и цитозина (см. стр. 319, 329). Полный гидролиз нуклеиновых кислот клеточной плазмы, так называемых рибонуклеиновых кислот (РНК), также дает фосфорную кислоту, /)-рибозу (вместо )-дезоксирибозы) и смесь тех же аденина, гуанина, цитозина и, кроме того, урацила. Тимин (метильный гомолог урацила) в них отсутствует. [c.673]

    При осторожном щелочном гидролизе рибонуклеиновых кислот или гидролизе с помощью ферментов (например, рибонуклеазой для рибонуклеиновых кислот, фосфодиэстеразой змеиного яда для дезоксирибонуклеиновых кислот) можно расщепить высокомолекулярные полинуклеотиды на простые нуклеотиды. В молекуле простого нуклеотида тот или иной из перечисленных выше гетероциклов связан с рибозой (в ДНК — с дезоксирибозой) и фосфорной кислотой, этерифицирующей сахарную часть нуклеотида. Это явствует из того, что среди продуктов гидролиза, проведенного в соответствующих условиях, можно найти свободный гетероцикл и изомерные фосфаты Д-рибозы (соответственно /)-2-дезоксири-бозы). С другой стороны, гидролиз нуклеиновых кислот или изолированных нуклеотидов можно (ферментативно или действием аммиака) довести и до соответствующих нуклеозидов, т. е. отщепить фосфорную кислоту, оставив связанными гетероцикл и сахар. Таким образом, нуклеотиды — мономеры , поликонденсацией которых (с отщеплением воды) образуются полинуклеотиды ( полимеры ), — представляют собой фосфорные вфиры нуклеозидов. Поскольку продукты гидролиза нуклеозидов — пириииди-новые и пуриновые гетероциклы (а также рибоза или дезоксирибова), идентифицируются сличением с известными образцами, остается установить место связи гетероцикла с сахаром, характер их циклизации, конфигурацию гликозидного центра и, наконец, место фосфорилирования сахарной части молекулы. [c.712]

    У больных апластической и гипопластической анемией выявляются изменения в содержании таких важных клеточных компонентов, как нуклеиновые кислоты, жир и гликоген (А. И. Зосимовская, Л. И. Казанова, Э. И. Терентьева, Ф. Э, Файнштейн, 1958). Обнаружено снижение количества рибонуклеиновой и дезоксирибонуклеиновой кислот во всех клетках, участвующих в гемопоэзе. Содержание жира и щелочной фосфатазы в зрелых гра-нулоцитах оказалось увеличенным, количество гликогена — уменьшенным. Жир и гликоген полностью отсутствовали в клетках эритропоэтического ряда, в которых определялось уменьшение цитохромоксидазы и увеличение глютатиона. Обнаружены изменения в процессе образования триптофана. Указанные сдвиги не являются специфичными, поскольку они обнаруживаются также в клетках крови и костного мозга и при лейкозах. [c.69]

    Нуклеиновые кислоты, которые делятся на дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты, были открыты в клеточном ядре, чем и объясняется их название (nu leus — ядро) РНК встречается также и в других частях клетки. Обе кислоты, играющие очень важную роль в биосинтезе белка, являются линейными полиме- [c.246]


Смотреть страницы где упоминается термин Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая: [c.436]    [c.442]    [c.7]    [c.446]    [c.15]    [c.57]    [c.674]    [c.184]    [c.8]    [c.106]    [c.566]   
Биохимия Т.3 Изд.2 (1985) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дезоксирибонуклеиновая кислота см также Нуклеиновые кислоты

Дезоксирибонуклеиновые кислоты

Нуклеиновые кислоты

Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая кислота

Нуклеиновые кислоты. также Дезоксирибонуклеиновая кислота, Рибонуклеиновая кислота

Рибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте