Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеиновые кислоты гидролиз

    Пиримидиновые нуклеозиды и нуклеотиды. При регулируемом гидролизе рибонуклеиновых кислот энзиматическими или химическими методами может образоваться каждый из четырех рибонуклеозидов—аденозин, гуанозин, цитидин и уридин,— их монофосфаты (по три от каждого) или, в случае уридина и цитидина, их 2, 5 - и 3, 5 -дифосфаты. При энзиматическом гидролизе дезоксирибонуклеиновых кислот получаются дезоксирибонуклеозиды и их 5 -фос-фаты,, являющиеся производными аденина, гуанина, тимина, цитозина, 5-ме-тилцитозина и 5-оксиметилцитозина 3, 5-дифосфаты пиримидиновых дезокси- [c.255]


    При отделении нуклеиновых кислот от других составных частей клетки получают очищенные кислоты в виде волокнистых осадков. Гидролиз очищенных нуклеиновых кислот дает три типа продуктов группу, состоящую из четырех оснований, сахар и фосфорную кислоту. Известны нуклеиновые кислоты двух видов, отличающиеся главным образом по строению сахара, образовавшегося в результате гидролиза. Рибонуклеиновая кислота (РНК) дает о-рибозу, в то время как дезоксирибонуклеиновая кислота (ДНК) — 2-дезокси-с-рибозу [c.316]

    Существует два различных типа нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), разница между которыми заключается в строении моно-сахаридного остатка. В результате гидролиза РНК в зависимости от условий получают соединения производных пиримидина или пурина с рибозой и фосфорной кислотой — нуклеотиды или соединения производных пиримидина или пурина с рибозой — нуклеозиды. Конечными продуктами гидролиза являются урацил, тимин, цитозин, аденин, гуанин, D-рибоза и фосфорная кислота. [c.712]

    Гидролиз фосфатов (гидролиз фосфолипидов, усвоение рибонуклеиновых кислот)  [c.355]

    Регулирование содержания сахара в крови Гидролиз рибонуклеиновых кислот Разрушает стенки клеток бактерий гидролизуя Р-1,4-гликозид-ные связи Гидролиз сложно-эфирных и пептидных связей Гидролиз пептидных связей Перенос кислорода в тканях Разрушает Н Ог Свертывание крови [c.362]

    Гидролиз рибонуклеиновой кислоты. Растворяют 20 г рибонуклеиновой кислоты в 800 мл 1н. раствора едкого кали и выдерживают в термостате при 37° в течение суток. Полученную реакционную смесь центрифугируют в течение 20 минут при 2500 об мин раствор декантируют с осадка (см. примечание 1) и помещают в фарфоровый стакан. Затем туда же при перемешивании порциями загружают ионит КУ-1 (см. примечание 2) до pH 7,0—7,5 (по универсальной индикаторной бумажке) (см. примечание 3). Расходуется около 450 мл ионита. Ионит поглощает ионы калия. Содержимое стакана переносят в цилиндрическую делительную воронку, на дне которой находится небольшой слой стеклянной ваты. Отделяют смолу от раствора и промывают ее дистиллированной водой до исчезновения в промывных водах поглощения при 260 m[i. Фильтрат и промывные воды объединяют и измеряют оптическую плотность (см. примечание 4) раствор 5 л) содержит 420000—440000 ОЕ. Состав реакционной смеси контролируют с помощью бумажной хроматографии (см. примечание 5), нанося на бумагу такой объем раствора, который содержит 100—150 мкг вещества, [c.94]


    Концентрированные растворы солей разрушают нуклеиновые кислоты, вредно также нагревание. Разбавленные кислоты также разрушают нуклеиновые кислоты, разбавленные щелочи быстро гидролизуют рибонуклеиновые кислоты. [c.439]

    Бариевые соли адениловой, гуаниловой, уридиловой и ци-тидиловой кислот являются наиболее удобной формой для выделения, хранения и применения нуклеотидов. Последние находят все больщее применение как для препаративных целей (синтез нуклеозидов, коферментов и т. д.), так и для биохимических исследований и в медицинской практике. Нуклео-зид-2 (3")-фосфаты бария могут быть получены из рибонуклеиновой кислоты щелочным гидролизом с последующим разделением методом ионообменной хроматографии и осаждением в виде бариевых солей. [c.93]

    Регулирование содержания сахара в крови Гидролиз рибонуклеиновых кислот [c.511]

    Деполимеризованная в ультразвуковом поле дезоксирибонуклеиновая кислота не гидролизуется под действием дезоксирибонуклеазы [5]. Другие исследователи отмечают наличие в реакционной среде и неорганических фосфатов [77, 78]. Следует отметить, что расшепление рибонуклеиновых кислот ультразвуком происходит с образованием симметричных фрагментов деструкции. Изучаемые образцы теряли аномальную вязкость. [c.243]

    Нуклеиновые кислоты, подобно белкам, представляют собой соединения с высокой молекулярной массой. В то время как при гидролизе белков образуется смесь аминокислот, при гидролизе нуклеиновых кислот получается смесь, содержащая фос- форную кислоту, сахар и некоторые органические основания. Из рибонуклеиновой кислоты (РНК) получается сахар рибоза, а из дезоксирибонуклеиновой кислоты (ДНК) — дезоксирибоза, в которой отсутствует гидроксильная группа у атома углерода в положении 2 (рис. 12.22). [c.277]

    АМИНОПУРИНЫ — группа веществ основного характера, представляющих собой производные пурина — бициклич. основания, лежащего в основе большой групны физиологически важных веществ. А. образуются наряду с углеводами (D-рибозой или дезоксирибозой) и фосфорной к-той при гидролизе нуклеопротеидов — дезоксирибонуклеиновых кислот и рибонуклеиновых, кислот. Из А. наибольшее. значение [c.96]

    Нуклеаза стафилококка — фермент, который состоит из единственной полипептидной цепи, содержащей 149 аминокислотных остатков, и проявляет гидролитическую активность по отношению как к дезоксирибонуклеиновой кислоте (ДНК), так и к полимерам рибонуклеиновой кислоты (РНК) [294]. Особенно интересно, что ферментативная активность целиком зависит от присутствия ионов Са(И) в соизмеримых концентрациях при гидролизе РНК и ДНК. Ион Са(П) необходим также для присоединения ингибиторов к [c.114]

    Четыре простых пиримидиновых р ибо нуклеотида, полученных щелочным гидролизом рибонуклеиновых [458] (уридиловой и цитидиловой) кислот, являются 2 - и З -фосфатами нуклеозидов уридина и цитидина [459а]. 5 -Фос-фаты уридина и цитидина найдены в энзиматических гидролизатах рибонуклеиновых кислот [460]. Монофосфаты этих соединений синтезированыфосфорили-рованием соответствующих нуклеозидных производных [461]. 2, 5 - и 3, 5 -Дифосфаты уридина и цитидина найдены в продуктах гидролиза рибонуклеиновых кислот змеиным ядом [462а] . Были синтезированы циклические 2, З -фос-фаты уридина и цитидина, встречающиеся в гидролизатах рибонуклеиновых кислот под действием рибонуклеазы [463]. [c.257]

    Природный образец. Хроматограмма природного образца, полученного в результате щелочного гидролиза 3 мкг гидролизата рибонуклеиновой кислоты Е. соИ В, приведен на рис. 9.2. Как видно из хроматограммы, природная смесь содержит больше компонентов, чем стандартная смесь. Это объясняется, по-видимому, тем, что в природном образце присутствуют в следовых количествах другие нуклеотиды, либо родственные соединения. [c.204]

    При полном гидролизе нуклеиновых кислот образуются фосфорная кислота, сахар, пиримидины и пуриновые основания. Сахар, входящий в состав нуклеиновых кислот цитоплазмы, представляет собой D-рибозу его содержат таклсе нуклеиновые кислоты, полученные из дрожжей. Эти нуклеиновые кислоты называют рибонуклеиновыми кислотами. Сахар нуклеиновых кислот, содержащихся в клеточных ядрах, представляет собой D-2-рибодезозу [c.1044]

    Нуклеиновые кислоты относятся к одному из двух классов РНК (рибонуклеиновая кислота) и ДНК (дезоксирибонуклеиновая кислота) . Эти кислоты были названы так, потому что при полном гидролизе РНК образуется пентоза в-рибоза, и при гидролизе ДНК—2-дезокси-в-рибоза. [c.466]

    При проведении щелочного гидролиза в осадок выпадают различные примеси ненуклеотидного характера. Количество осадка зависит от чистоты исходного образца рибонуклеиновой кислоты н не оказывает существенного влияния па дальнейшее разделение. [c.99]

    Все перечисленные изомеры мононуклеотидов хорошо известны. Смесь 2 - и З -фосфатов образуется при гидролизе рибонуклеиновых кислот наилучшим с препаративной точки зрения является щелочной гидролиз. Как будет подробно рассмотрено ниже, образование смеси 2 - и З -фос-фатов является следствием механизма гидролиза нуклеиновых кислот, и поэтому принципиально невозможно направить этот процесс таким образом, чтобы получить только 2 - или только З -замещенные изомеры. Эти изомеры с чрезвычайной легкостью переходят один в другой, и их разделение стало возможным лишь в последнее время в связи с развитием техники ионообменной хроматографии. [c.215]


    Более сложным оказался вопрос о строении полимерной цепи в рибонуклеиновых кислотах. РНК также являются высокомолекулярными соединениями, цепь которых состоит из рибонуклеозидов. Полимер при гидролизе распадается на соответствующие мономеры — рибонуклеоти-ды и, следовательно, РНК являются, подобно белкам и полисахаридам, продуктами поликонденсации мономеров, происходящей с отщеплением иппн Молекулярный вес РНК ниже молекулярного веса ДНК и колеблется в значительных пределах, достигая 1 000 000. РНК, будучи кислотами, при титровании показывают присутствие только первичного кислотного гидроксила. Так как известно, что пирофосфатная связь в них также отсутствует, то единственным возможным типом построения полимерной цепи является тип  [c.248]

    Выбор между ЭТИМИ возможностями удалось сделать после того, как были найдены специфические ферменты, гидролитически отщепляющие остаток фосфорной кислоты только от третьего углеродного атома рибозного остатка и не затрагивающие эту группировку, если она связана с С(2). Указанная специфичность ферментов была проверена путем дефос-форилирования 2 -фосфатов и З -фосфатов нуклеозидов, из которых только вторые расщеплялись. Оказывалось, что эти ферменты — панкреатическая р.ибонуклеаза для пиримидиновых нуклеотидов и нуклеаза селезенки для пуриновых — легко гидролизуют рибонуклеиновые кислоты, полностью расщепляя их до мононуклеозидов. Это ясно показывает, что в РНК имеется налицо только 3 -5 -связь, так как только эта связь может подвергаться действию указанных специфических ферментов. Общая структура РНК может быть представлена в виде (IV). [c.248]

    Фосфаты и пирофосфаты . Эфиры моносахаридов с фосфорной и пирофосфорной кислотами имеют важное биологическое значение. Они участвуют почти во всех биохимических реакциях моносахаридов, приводящих к распаду моносахаридов, их взаимным превращениям и биосинтезу более сложных углеводсодержащих соединений. Обычно из природных источников выделяют фосфаты моносахаридов, у которых остаток фосфорной кислоты находится либо у первичного гидроксила моносахарида (например, глюкозо-6-фосфат), либо у гликозидного гидроксила (гликозилфосфаты, например а-Д-глюкозо-1-фосфат). При расщеплении некоторых природных биополимеров образуются фосфаты сахаров, содержащие остаток фосфорной кислоты у вторичного гидроксила (например, смесь производных рибозо-2- и рибозо-З-фосфатов при щелочном гидролизе рибонуклеиновой кислоты). [c.143]

    Частица ВТМ состоит на 947о из белка и на б7о из рибонуклеиновой кислоты. Согласно современным представлениям (Френкель-Конрат, Шрамм) белковая часть ВТМ слагается из 2900 субъединиц — полипептидов с молекулярным весом около 18 000 (рассчитано на основании аминокислотного состава). Они соединены между собою вторичными связями. Белок при растворении в кислой среде (pH 3,5—6,5) распадается на субъединицы, которые вновь объединяются при стоянии раствора, пр-5 котором происходит образование белка с молекулярным весом о<<олэ 100 000. Как превращается этот белок в полимер с молекулярным весом около 50 000 000, пока еще остается неизвестным. Есть предполох<ение, чтс.- существенное значение при этом играют 5Н-группы. а гигантская молекула, представляющая собой полый цилиндр, связывается затем с рибонуклеиновой кислотой, молекулы которой располагаются внутри ц линдра. Так представляют в нйстоящее время образование ВТМ. Характер связи РНК с белком различен- до 70% белка отделяется при мягкой обработке щелочью, остальные 30% не гидролизуются и в боле жестких условиях. [c.534]

    Ограниченное время жизни характерно также для большого числа липидных компонентов клеток, для рибонуклеиновых кислот и для полисахаридов всех мембран. Эти данные показывают, что внутри клеток существует непрерывный поток материи, который обус ловливает возможность построения мембран и органелл клетки, а так же постоянное обновление компонентов, из которых онн построены Этот поток материи определяется необратимыми перестройками полиме ров, включая их окончательный гидролиз. Практически невозможно пе речислить все известные в настоящее время модификации биополиме ров, однако в следующих разделах мы попытаемся описать некоторые из них. [c.495]

    Ввиду устойчивости ДНК трудно представить возможность обмена между Si (ОН) 4 и фосфатом в рибонуклеиновых кислотах. Однако Шварц и Баронецкий [285] сообщили, что реакции гидролиза, сопровождающиеся выделением свободной фосфорной кислоты, ускорялись в присутствии Si (ОН) 4. Авторы показали, что наблюдался обмен кремневой кислоты с фосфатом в рибонуклеиновой кислоте. Керстен и Штаудингер [286] указали на взаимодействие кремневой кислоты с никотинамидаде-ниндинуклеотидом (NAD) и даже с аденозинтрифосфатом (АТР). Позже возникли сомнения относительно этих наблюдений, поскольку подобные данные могли быть вызваны случайным присутствием бактерий. [c.1062]

    РНазы A за исключением того, что вместо двух остатков гистидина в общем кислотно-основном катализе гидролиза принимают участие остатки гистидина и глутаминовой кислоты [29]. И в этом случае гидролиз промежуточно образующегося гуанозин-2, 3 -цик-лофосфата протекает по механизму in-line [30]. Оба фермента (РНаза А и РНаза Tj) с их различной специфичностью к основаниям интенсивно использовали при определении последовательности оснований в рибонуклеиновых кислотах. [c.144]

    Из дезоксирибонуклеиновых кислот, значительно более устойчивых к действию щелочей, чем рибонуклеиновые кислоты, и требующих для гидролиза других ферментативных систем, можно с помощью мшеральных кислот отщепить пурины и получить тиминовые кислоты используя ферменты поджелудочной железы получают олигонуклеотиды . [c.436]

    Фермент рибонуклеаза I из поджелудочной железы [41, 51] гидролизует рибонуклеиновые кислоты до MOHO-, ди-, три- и тетра-нуклеотидов. Большая часть рибонуклеиновой кислоты постоянно остается непрореагировавшей. Рибонуклеаза I неактивна по отношению к дезоксирибонуклеиновой кислоте, однако тиминовая кислота тоже частично гидролизуется. Кристаллическая рибонуклеаза I имеется в продаже .  [c.442]

    В отличие от протеидов других классов простетические группы нуклеопротеидов— нуклеиновые кислоты, или полинуклеотиды, — являются макромолекулярными соединениями. Они имеют сложное строение и дают в результате гидролиза фосфорную кислоту, пентозу и пиримидиновые и пуриновые основания. Строение нуклеиновых кислот будет описано ниже (см. Нуклеиновые кислоты ). В плазме клетки (цитоплазме) было обнаружено также очень большое число шарообразных частиц, называемых микросомами, с молекулярными весами порядка нескольких миллионов, также состоящих из нуклеиновых кислот (рибонуклеиновой кислоты) и белков, В этих микросомах происходит синтез белков. Нуклеиновые кислоты микросомов действуют как матрицы или клише (гены), служащие для синтеза специфичных белков и для своего собственного воспроизведения (Н. Е, Паладе, 1955 г,), В этом синтезе участвуют также и ферменты, связывающие аминокислоты с аденозиимонофосфорпой кислотой (М, Хогланд, 1956 г.). [c.455]

    Рибонуклеаза, еще один глобулярный белок небольшого размера, представляет собой фермент, секретируемый клетками, поджелудочной железы в тонкий кишечник, где он катализирует гидролиз некоторых связей в молекулах рибонуклеиновых кислот, содержащихся в перевариваемых пищевых продуктах. Третичная структура рибонуклеазы, установленная методом рентгеноструктурного анализа (рис. 8-7), характеризуется тем, что в ее полипептидной цепи имеется очень мало а-спиральньк участков, но зато в ней есть достаточно большое число сегментов, находящихся в р-конформации. В этом отношении рибонуклеаза отличается от миоглобина, цитохрома с и ли- [c.194]

    Гейл [643], обстоятельно изучавший процессы включения аминокислот и синтез белка у бактерий, сообшил, что включение аминокислот в фрагменты разрушенных клеток стафилококка ускоряется рибонуклеиновой кислотой. Далее он установил, что некоторые продукты ферментативного расщепления рибонуклеиновой кислоты также стимулируют включение аминокислот. По-видимому, в таких продуктах гидролиза содержится ряд активирующих веществ, химическая природа которых еще не установлена .  [c.280]

    Гидролиз рибонуклеиновых кислот Разрушает стенки клеток бактерий, гидролизуя р-1,4-глико-зид-гликозные связи Гидролиз сложноэфирных и пептидных связей Г идролиз пептидных связей [c.390]

    Нуклеиновые кислоты. Дезоксирибонуклеиновая кислота относится к группе полимеров, называемых нуклеиновыми кислотами. В результате изучения продуктов гидролиза нуклеиновых кислот было установлено, что мономерами нуклеиновых кислот являются нуклеотиды. При гидролизе последних образуется смесь гетероциклических аминов, пентоз и фосфорной кислоты. При гидролизе нуклеиновой кислоты в основном получается 4 гетероциклических амина аденин, гуанин, цитидин и тимин (фиг. 122). Кроме того, выделено две пентозы рибоза и дезоксирибоза ( дез означает отсутствие дезокси — отсутствие кислородного атома в молекуле). Каждая из нуклеиновых кислот содержит либо ри-бозу, либо дезоксирибозу. Те нуклеиновые кислоты, углеводная часть которых представлена рибозой, называются рибонуклеиновыми кислотами (РНК), а нуклеиновые кислоты, в состав которых входит дезоксирибоза,— дезоксирибонуклеиновыми кислотами ЩНК).Схема гидролиза нуклеиновых кислот приведена на фиг. 122. [c.420]

    Для отделения рибонуклеиновой кислоты от белковой части молекулы нуклеопротеида [7—13] полученные препараты заливают 100-кратным количеством охлажденной воды и добавляют тонкой струей охлажденный раствор NaOH, конечная концентрация которого должна быть 50мл 33%-ного едкого натрия в 1 л гидролизируемого раствора. Гидролиз проводят при 0°, и продолжается он [c.36]

    Отделение дезоксирибонуклеиновой кислоты от белковой части нуклеопротеида проводят таким же способом, как и отделение рибонуклеиновой кислоты, только с той разницей, что препарат дезоксирибонуклеопротеида гидролизуют не при нулевой температуре, а в кипящей бане. После гидролиза дезоксирибонуклеино- [c.36]

    Пентаеуклеотид состоит из натриевых солей пентозо-нуклео-тидов рибонуклеиновой кислоты дрожжей. Приготовляется гидролизом нуклеиновой кислоты дрожжей с помощью едкого натра. Применяется внутримышечно для лечения инфекционных заболеваний, сопровождаемых лейкопенией. [c.425]


Смотреть страницы где упоминается термин Рибонуклеиновые кислоты гидролиз: [c.1047]    [c.188]    [c.702]    [c.1063]    [c.143]    [c.553]    [c.774]    [c.48]    [c.475]    [c.422]    [c.391]   
Химия природных соединений (1960) -- [ c.0 ]

Хроматография Практическое приложение метода Часть 2 (1986) -- [ c.163 ]




ПОИСК





Смотрите так же термины и статьи:

Рибонуклеиновая кислота, полимеры, гидролиз

Рибонуклеиновые кислоты

Рибонуклеиновые кислоты РНК гидролиз кислотный

Химический гидролиз рибонуклеиновых кислот



© 2025 chem21.info Реклама на сайте