Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Движущая в теплопередаче

    В результате этого даже при большой скорости теплоносителя, движущегося внутри трубок. многоходового теплообменника, значение коэффициента теплопередачи к не является достаточно высоким. [c.218]

    Теплопередача от жидкости к жидкости определяется коэффициентами теплоотдачи от стенок к жидкости. Расчет этих коэффициентов производится по формулам теплоотдачи при нагревании или охлаждении жидкости, движущейся в канале. В качестве определяющего размера при этом принимается эквивалентный диаметр проточного сечения. Теплоотдача пара к стенке рассчитывается по формулам теплообмена при конденсации пара на вертикальных стенах. [c.227]


    Если не принимать во внимание при теплопередаче падение давления в движущейся среде, то критериальное уравнение будет включать только четыре безразмерных критерия  [c.85]

    В скруббере Вентури высокая турбулентность течения достигается вследствие больших скоростей потока (в сужении значения критерия Рейнольдса достигают 0,6-10 —2,0-10 ) и введения абсорбирующей жидкости под прямым углом к быстро движущемуся газу. Например, при исследовании охлаждения газа вспрыскиванием воды, найдены следующие объемные коэффициенты теплопередачи для колонны без заполнения 450 ккал/(м -ч-°С), а для скруббера Вентури 3700 ккал/(м -ч °С), т. е. в 80 раз выше. [c.415]

    Важной особенностью этого уравнения является то, что оно учитывает отношение высоты слоя к диаметру аппарата L Dt Коэффициент теплоотдачи к поверхности частиц в псевдоожиженном слое. Ввиду затруднительности определения температуры отдельных небольших движущихся частиц не удалось добиться серьезного успеха в измерении теплопередачи между взвешенными частицами и жидкостью. [c.273]

    Х-5. Скорость реакции, протекающей в потоке, движущемся через слой катализатора, определяется скоростью диффузионного массообмена. Приняв, что скорости подачи сырья находятся в соотношении X, найти соотношение размеров прототипа и модели, а также соотношения параметров теплопередачи. Заметим, что числа Рейнольдса должны быть равны для обоих реакторов. [c.352]

    Весьма перспективны регенеративные печи с движущейся насадкой. Они отличаются высокой эффективностью в отношении теплопередачи. Принцип действия установок с движущимся теплоносителем можно рассмотреть на примере установки фирмы Филлипс петролеум . [c.48]

    При решении задачи оптимального выбора теплообменника из нормализованного ряда число конкурентоспособных вариантов может быть увеличено, если снять или ослабить некоторые ограничения технологического характера. Например, можно допустить небольшое увеличение (в пределах 5—10 %) расхода охлаждающей воды без учета соответствующего увеличения затрат на нее. Это целесообразно в тех случаях, когда требуемая поверхность теплопередачи конкурентноспособного варианта несколько меньше, чем ее нормализованное значение. Так, в примере 1 требуемая поверхность для варианта IIк оказалась всего на 0,2 больше нормализованной, и он был отброшен как непригодный. Однако если допустить увеличение расхода охлаждающей воды всего на 5 %, средняя движущая сила увеличится на 0,3 град. (Л ср = 22,3 град.), коэффициент теплоотдачи к воде увеличится в (1,05)° раза [ а = 4440 Вт/(м -К)1, коэффициент теплопередачи увеличится т К = 1050 Вт/(м -К). При этом требуемая поверхность составит F = 77,8 м , и нормализованная поверхность (79,0 м ) станет достаточной с запасом А = 1,54 %. [c.41]


    Определение скорости межфазного обмена в контактном аппарате включает в себя три самостоятельных задачи определение движущей силы процесса, определение коэффициента массопередачи (или теплопередачи) и определение поверхности контакта фаз. [c.272]

    Механизм теплопередачи в зернистом слое. В потоках газов с понижением числа Ве твердые частицы начинают играть активную роль в теплопроводности зернистого слоя при атом нарушается подобие процессов тепло- и массопереноса, имеющее место при больших числах Ке. Для анализа процесса переноса тепла в зернистом слое необходимо учесть три механизма теплообмена 1) перенос тепла движущимся газом 2) теплопроводность по твердой фазе через точки контакта частиц и 3) смешанный механизм теплопередачи по газовой и твердой фазам через поверхность их раздела. При высоких температурах необходимо учесть также лучистый теплообмен мы, однако, ограничимся диапазоном температур, характерным для каталитических процессов, в котором лучеиспусканием можно пренебречь по сравнению с остальными механизмами переноса тепла. [c.241]

    Конвективный теплообмен между газом или жидкостью и твердым телом происходит в результате их соприкосновения. Теплопередача при этом происходит переносом теплоты движущимися материальными частицами газа или жидкости, прилегающей к поверхности твердого тела при эндотермических реакциях, и от частиц материала к газу или жидкости при экзотермических реакциях, за исключением печи синтеза хлористого водорода, где тепло от реакционных газов передается металлическому кожуху печи и отводится из системы. [c.26]

    Конвективный теплообмен между газом или жидкостью и твердым телом происходит в результате их соприкосновения. Теплопередача при этом происходит переносом теплоты движущимися материальными частицами газа или жидкости, прилегающими к теплообменной поверхности. [c.57]

    Функционирование теплообменника полностью характеризуется 11 информационными переменными — массовые расходы горячего потока и хладоагента К — конструкционный тип теплообменника (противоточный, прямоточный, кожухотрубчатый, труба в трубе и у. п.) А — поверхность теплообмена Q — количество тепла, переданное потоком горячей жидкости потоку хладоагента к — общий коэффициент теплопередачи Д4 — среднелогарифмическая движущая сила теплопередачи 1, и з, 4 — температуры горячего потока и хладоагента на входе в теплообменник и на выходе из него. [c.66]

    Средний температурный напор. Для характеристики движущей силы процесса теплопередачи необходимо знать разность температур потоков, обменивающихся теплом. Схема изменения разности температур потоков вдоль поверхности теплообмена показана на рис. 87. Из рисунка видно, что в тепло-обменных аппаратах разность температур и температура потоков непрерывно изменяются, поэтому в расчетах в качестве Ai принимается ее среднее (А ср) или среднелогарифмическое (Ai p ig) значение. Величина Ai -p — это средняя движущая сила процесса теплопередачи. Она называется средним температурным напором. [c.158]

    Коэффициент теплопередачи конденсаторов водяного пара зависит от скорости пара, направления его движения и пленки, паровой нагрузки. Влияние скорости движения пара на теплопередачу со стороны конденсирующего продукта становится ощутимо при скоростях движения более 100—150 м/с и существенно зависит от давления. При малых давлениях Рк < 10—20 кПа и скоростях пара 50—100 м/с коэффициент теплоотдачи а.вн движущегося пара близок к коэффициенту неподвижного пара. [c.137]

    При совпадении направления движения пара и пленки конденсата поверхностное трение между движущимся паром и пленкой приводит к ускорению течения пленки, ее толщина уменьшается, снижается термическое сопротивление, а коэффициент теплопередачи возрастает. При встречном движении пара и пленки конденсата в дефлегматоре коэффициент теплопередачи по сравнению с таковым в конденсаторе становится ниже. С уменьшением паровой нагрузки АВО коэффициент теплоотдачи вн снижается, но его уменьшение связано не с изменением скорости движения пара, а с относительным увеличением инертных примесей. [c.137]

    Во-первых, надо выделить некоторое свойство системы, которое обусловливает скорость превращения. Этот фактор называют движущей силой превращения и выбирают, исходя из термодинамических соображений, как отклонение от равновесия. Обычно используемой движущей силой является разность температур для теплопередачи, разность концентраций для массопередачи и удаление от равновесия для химической реакции. Следовательно, для гетерогенных процессов, включающих стадии массопередачи и последовательные химические реакции, можно написать  [c.325]


    Условия возможности осуществления процесса теплообмена в аппаратах смешанного тока. Главным условием, определяющим возможность передачи тепла между средами, находящимися в тепловом контакте, является наличие перепада температур, который представляет собой движущую силу процесса теплопередачи. [c.50]

    С учетом различия значений коэффициентов термического расширения в реальных (в случае движущейся автоцистерны) и лабораторных условиях можно считать совпадение реального и расчетного времени чисто случайным. Следует также отметить, что механизм теплопередачи для реальной ситуации (когда цистерна заполнена на 95 - 100%) отличается от такового в эксперименте (когда цистерна была заполнена примерно наполовину). [c.228]

    Для теплового расчета реактора нужно располагать экспериментальным значением частного коэффициента теплопередачи от движущегося слоя к стенкам для данной системы газ— твердое тело. Зная материал, пз которого сделан аппарат, толщину стенок и способ [c.310]

    Коэффициент теплопередачи для движущегося слоя [c.312]

    И, Тепловые процессы связаны с передачей тепла от одного тела к другому. К ним относятся нагревание и охлаждение, испарение и конденсация, плавление и затвердевание. Движущей силой тепловых процессов является разность температур. Скорость протекания процесса определяется законами теплопередачи. [c.13]

    Нефть или нефтепродукты нагревают в трубчатых печах дымовыми газами. Передача теплоты ог греющих газов к сырью, движущемуся по трубам, происходит через стенки труб или путем радиации (излучения), или конвекцией. Поверхность теплопередачи Рр при нагреве излучением может быть определена по формуле [c.58]

    Д I — движущая сила теплопередачи, °С t — телшература, С  [c.6]

    В расчетной практике иногда удобно определять движущую силу мокрой теплопередачи по влагосодержанию насыщенного газа. Так, для модели противотока [c.94]

    В многополочных пенных аппаратах существует наложение различных режимов движения фаз, в частности, перекрестного тока на каждой полке и противотока по всему аппарату. На практике расчет движущей силы теплопередачи в этих аппаратах часто производят по среднелогарифмической зависимости, характеризующей противоток [165, 232]. [c.94]

    При рассмотрении процесса передачи теила от движущейся жидкости через металлическую стенку гароизвольной фор.мы к другой движущейся жидкости мы ввеоЧИ понятие коэффициента теплопередачи. Количество передаваемого тепла мы выразили ири помощи равенства (1)  [c.12]

    Теплопередача конвекцией предполагает наличие (перемещающегося вещества, следовательно, она возможна только между телом и текучим веществом. Под текучим веществом следует понимать жидкость, газы и пары. При нагреве твердого и текучего вещества происходит обмен тепла между более нагретыми, т. е. бы-стродвижущимися молекулами, и более холодными. Как в твердом теле, так и в текучем веществе передача тепла производится теплопроводностью. Однако это явление в текучем веществе протекает значительно более интенсивно благодаря тому, что частицы вещества в данном случае являются свободно движущимися. Слои текучего вещества, которые прилегают непосредственно к нагретому твердому телу, нагреваются, благодаря чему они становятся более легкими. Нагретые частицы начинают двигаться, подымаются и не только освобождают место у поверхности твердого тела новым, более холодным частицам, но и переносят с собой тепло в более холодные слои текучего вещества и там его передают дальще. При этом безразлично, происходит ли движение текучего вещества у поверхности нагрева в результате разности температур и, следовательно, удельных весов жидкости (естественная конвекция) или в результате искусственно вызванного и поддерживаемого фактора (искусственная или вынужденная конвекция). Вполне очевидно, что указанные рассуждения применимы как для процесса нагрева, так и для процесса охлаждения. Оба случая имеют одинаковое техническое значение в обоих случаях закономерности конвективного теплообмена оказывают решающее влияние на механизм теплопередачи. Не зная их, нельзя рассчитать количество передаваемого тепла. [c.28]

    Существуют три параллельных механизма воздействия химической реакции на скорость массопередачи. Во-первых, наличие в системе химической реакции, как правило, оказывает влияние на установление равновесного распределения переходящего компонента между фазами и тем самым иа движущую силу процесса массопередачи независимо от способа ее выражения. Во-вторых, химическая реакция оказывает влияние на величину коэффициента массопередачи независимо от способа его выражения, т. е. независимо от способа выражения движущей силы процесса. Взаимное влияние химической реакции и процессов переноса рассматривается термодинамикой необратимых процессов. Общий подход к вопросу разработан Де Гроотом и Мазуром [1], которые рассмотрели процесс теплопередачи в системе с химической реакцией. Вопросы взаимного влияния массопередачи и химической реакции с позиций термодинамики необратимых процессов рассматривались Оландером [2], а также Фридлендером и Келлером [3]. Хотя количественные результаты были получены 13] лишь для области очень малых отклонений от химического равновесия, однако качественно было показано, что наличие объемной реакции приводит к увеличению потока массы. [c.226]

    Рг,1,п-1 — удельный вес . Сг,1,п-1 — удельная теплоемкость потока АИ1, — тепловой эффект химической реакции Хт,1,п — мольная доля -го химического компонента (ЛТ )л — среднелотарифмическая движущая сила теплопередачи Кг.п — коэффициент теплопередачи Лг.п—поверхность теплообмена. [c.175]

    Давление в рубашке реактора. Тепло, выделяемое при реакции, переносится от катализатора через стенкп трубок реактора к кипящей в рубашке жидкости, обычно воде. Общей движущей силой теплопередачи является раз[юсть температур между слоем катализатора и охлаждающей жидкостью в рубашке. Если давление в рубашке возрастает, то повышается температура кипения охлаждающей жидкости, а скорость теплопередачи снижается. Это приводит к увеличению температуры катализатора. Таким образом, давление в рубашке реакто- [c.281]

    При увеличении массовой доли пара в потоке, движущемся в обогреваемом канале, могут быть достигнуты условия, когда пузырьковое кипение будет оказывать все меньщее влияние на коэффициент теплоотдачи по сравнению с влиянием конвекции в двухфазном потоке. При этом меняется механизм парообразования в потоке, а следовательно, и механизм теплопередачи. Если на участке кипения пар образовывался в виде пузырьков, то на участке конвективной теплоотдачи двухфазного потока происходит преимущественное испарение жидкости с имеющейся в потоке границы раздела фаз. Визуальные и кинематографические исследования позволили установить наличие участка, на котором пузырьковое кипение подавляется и может быть подавлено полностью. Этот режим теплоотдачи иногда называют испарением при вынужденной конвекции [105]. Важно подчеркнуть, что теплоотдача на этом участке полностью определяется конвективными токами, формирующимися при движении двухфазного потока. [c.244]

    Изображенный на рис. VII- нитратор предназначен для проведения периодических или полупери-одических процессов. Последовательность операций для аппарата полупериодического действия загружают органическое вещество, включают мешалку, затем постепенно вводят требуемое количество нитрующего агента. Скорость поступления нитрующего агента в аппарат определяется интенсивностью теплопередачи через поверхность охлаждения. Охлаждающую воду подают в систему заранее. Во время перемешивания требуется вводить нитрующий агент не в какое-то одно место реакционного объема, а через распределитель, расположенный у основания реактора под мешалкой. Вставной стакан (диффузор) способствует созданию циркуляционных потоков, движущихся с большой скоростью вблизи охлаждающих поверхностей коэффициент теплопередачи при этом увеличивается. [c.322]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Примечание. В формулах приняты следующие обозначения а— коэффициент температуропроводности, м-/ч -Х—коэффициент теплопроводности, Вт/Чм- С) ср-тепло-емкость газа при постоянном давлении, Дж/(кг °С) —средняя движущая сила теплопередачи, °С ДС—движущая спла массопередачи, выраженная в единицах концентрации (кг м , моль/м ) О—количество перенесенной массы, кг р — количество перенесенной теплоты, Дж Г—межфазная поверхность, эквивалентная поверхности теплообмена, м= т—время работы аппарата, с, ч р—плотность, кг/м" О—коэффициент молекулярной диффузии, м/с —общий коэффициент теплоцередачи, Вт/(м °С) а — частный коэффициент теплоотдачи, Вт/(м - С) гОр—линейная скорость потока, м/с I — характерный линейный размер, м —кинематический коэффициент вязкости газа, м с К—общий коэффициент массопередачи, кг/(м- ч) б—коэффициент массопередачи, м/ч [прп теплообмене—кг/(м ч)] —инерционно-вязкостный критерий (видоизмененный критерий Рейнольдса для газа). [c.90]

    Движущая сила тепло- и массообмена (А< и АС) в уравнениях (II.1)—(И.З) по аналогии с массопередачей (абсорбция, десорбция) определяется в зависимости от взалмного направления потоков жидкости и газа, а также от принятой гидродинамической модели перемешивания. Для пенных аппаратов, как и для других реакторов со взвешенным ( кипяш,им ) слоем, общепринятой служит схема движения потоков в виде перекрестного тока. Для перекрестного тока выведены многие теоретические зависимости, характеризующие гидродинамику пенного слоя, а также массо-и теплообмен в слое пены [178, 234, 235]. Для пенных аппаратов с переливами, т. е. при перекрестном направлении потоков на одной тарелке, движущую силу сухой теплопередачи можно определять по формуле Позина [222, 232—235]  [c.92]

    При совместном протекании тепло- и массопередачи вид расчетной формулы для движущей силы определяется механизмом этих явлений. Как показано выше (стр. 89), сзга ествует несколько возможных схем теплопередачи между газом и жидкостью, сопровождаемой массообменом. Наиболее важны для практики охлаждение не насыщенного водяным паром газа, сопровождаемое испарением жидкости, и охлаждение насыщенного газа с конденсацией водяного пара. Для первого случая уравнение теплопередачи в пенном слое имеет вид [c.93]


Смотреть страницы где упоминается термин Движущая в теплопередаче: [c.68]    [c.164]    [c.396]    [c.220]    [c.242]    [c.9]    [c.175]    [c.378]    [c.127]    [c.123]    [c.517]    [c.312]    [c.44]    [c.9]   
Гидродинамика, теплообмен и массообмен (1966) -- [ c.408 ]




ПОИСК





Смотрите так же термины и статьи:

Теплопередача



© 2024 chem21.info Реклама на сайте