Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подобие тепловых процессов

    Механизм теплопередачи в зернистом слое. В потоках газов с понижением числа Ве твердые частицы начинают играть активную роль в теплопроводности зернистого слоя при атом нарушается подобие процессов тепло- и массопереноса, имеющее место при больших числах Ке. Для анализа процесса переноса тепла в зернистом слое необходимо учесть три механизма теплообмена 1) перенос тепла движущимся газом 2) теплопроводность по твердой фазе через точки контакта частиц и 3) смешанный механизм теплопередачи по газовой и твердой фазам через поверхность их раздела. При высоких температурах необходимо учесть также лучистый теплообмен мы, однако, ограничимся диапазоном температур, характерным для каталитических процессов, в котором лучеиспусканием можно пренебречь по сравнению с остальными механизмами переноса тепла. [c.241]


    Современные представления о процессах испарения связаны с применением теории подобия к процессам теплообмена, расширением представлений о молекулярных и конвективных процессах переноса тепла и вещества — развитием гидродинамической теории теплообмена, а также теории пограничного слоя. В общем случае скорость испарения жидкости [c.20]

    Пол у шк ИИ А. А., О критериях подобия тепло- и массообмена в процессах иопарения жидкости (обзор]), Инж.-фи знч. журнал, т. 2, № 2, -1959. [c.664]

    Следует указать, что теорией подобия пользуются для составляющих сложного процесса только теплопереноса или только массопереноса. Сложный процесс, включающий одновременно тепло- и массоперенос и физико-химические процессы, моделировать на основе теории подобия обычно не удается. Покажем это на примере. [c.28]

    Так как механизм внутреннего трения сводится к процессу переноса количества движения, который совершенно подобен процессам переноса тепла и вещества, то подобие между процессами диффузии и теплопередачи можно распространить и на сопротивление трения. Такое подобие между теплоотдачей (а следовательно и диффузией) и сопротивлением трения было впервые установлено Рейнольдсом и получило название аналогии Рейнольдса. Если сопротивление связано только с трением, то коэффициент сопротивления оказывается соответствующим критерию Стэнтона и между обеими величинами получается весьма простая численная связь  [c.38]

    Если перемешивание сопровождается тепло- или массообменом, то условия (198) недостаточно и следует учесть также условия подобия этих процессов. [c.224]

    Источники влаги и тепла учитываются при помощи критерия фазовых превращений. Были установлены основные числа и критерии подобия кинетики процесса сушки. На протяжении более чем 35 лет теория углубления поверхности испарения получила полное экспериментальное подтверждение. Последними работами удалось установить взаимосвязь между скоростью углубления зоны испарения и критерием фазовых превращений. Таким образом, теория сушки получила свое окончательное завершение. [c.4]

    Приняв за масштаб силу инерции и поделив на него все остальные, получим уже известные критерии подобия гидродинамических процессов Но, Ей, Рг, Ке. Аналогичным образом можно получить критерии подобия для процессов тепло- и массообмена, что и будет показано в соответствующих разделах. [c.75]


    Полученные результаты не могут нас удовлетворить прежде всего потому, что в них пока совершенно не отражено влияние тех сторон физической обстановки процесса, которые связаны с явлениями переноса тепла. Разумеется, температурное поле (а следовательно, и вся гидродинамическая картина) существенным образом зависит от этих явлений. Очевидно, система аргументов должна быть дополнена критериями подобия, характеризующими процесс теплообмена. К исследованию этого процесса мы теперь и перейдем. [c.151]

    Теоретически существует другая возможность (кроме той, что указана в пунктах 3—5) использования экспериментальных результатов если ход Исследуемого явления удается описать в виде системы уравнений, то, решая ее для новых условий, можно определить ход явлений в этих условиях. В случае физико-химических процессов система уравнений, описывающих явление (например, кинетику реакции, тепло- и массообмен и т. д.), — это обычно система дифференциальных уравнений, которые не удается решить аналитически. Отсюда следует, что метод подобия имеет важное значение, хотя все чаще удается решать сложные системы уравнений благодаря использованию ЭВМ. [c.23]

    Если математическое описание процесса на основе уравнений баланса получено, но выполнение численных расчетов по нему вызывает затруднения, то его также можно использовать для получения аналогичных безразмерных комплексов методами теории подобия. В этом случае можно понять физический смысл таких комплексов (их называют критериями подобия) и использовать их не только для расчета коэффициентов массо- и тепло-переноса, но в ряде случаев — и для воспроизведения результатов исследований на установках укрупненного масштаба. [c.130]

    В различных реальных ситуациях вид дифференциальных уравнений может быть изменен, в них могут быть введены новые члены — для учета перемешивания, встречных потоков, особых условий тепло- и массообмена и т. д. Поэтому приведенные выше критерии подобия представляют лишь незначительную часть используемых в литературе безразмерных комплексов. В работах [17, 18] авторы собрали и обобщили данные о 285 безразмерных комплексах, используемых при исследовании процессов химической технологии. Однако наиболее часто используемые критерии подобия приведены нами выше. [c.27]

    Псу1уче11ные критерии N11, Ро и Ре являются критериями теплового подобия. Критерий Нуссельта характеризует интеисивность теплообмена на границе раздела фаз. Критерий Фурье характеризует связь между скоростью изменения температурного поля, размерами и физическими характеристиками среды в нестационарных тепловых процессах. Критерий Пекл( характеризует отношение количеств тепла, распространяемых в потоке жидкости конвекцией и теплопроводностью. [c.136]

    Для практики проектирования пенных теплообменников наиболее важен случай охлаждения газа, не насыщенного водяными парами, при его высокой начальной температуре, так как в производственных процессах температура охлаждаемых газов, как правило, выше 100 °С. С целью получения более полных данных для моделирования и проектирования пенных теплообменников было предпринято исследование охлаждения воздуха водой в пенном аппарате при высокой начальной температуре воздуха (200, 300 и 400 С) и малом содержании водяного пара в охлаждаемом воздухе [165]. Определение общего вида кинетических уравнений выполнено автором теоретически с применением теории подобия, на основе предшествующих работ по гидродинамике пенного слоя и теплообмену при пенном режиме (см., например, [178, 234, 307)], а также дифференциальных уравнений распространения тепла, уравнений теплообмена на границе раздела и соответствующих краевых условий. С учетом конкретной задачи исследования получены в общем виде следующие аналитические зависимости [c.101]

    Тепло - и массообмен в ЦПА. Имеются подробные сведения [42—47] об исследовании в различных моделях ЦПА процессов теплопередачи, абсорбции и десорбции хорошо растворимых газов и пылеулавливания приведены соответствующие расчетные формулы, полученные с применением теории подобия, на основе разработанных ранее принципов моделирования пенных аппаратов [178, 232, 307]. [c.257]

    Приложение теории подобия к передаче тепла конвекцией показало, что этот процесс определяется рядом критериев, значения которых приведены в табл. 13. [c.384]

    Наличие уравнений, описывающих процесс, вне зависимости от возможности их рещения позволяет получать критерии подобия, которые имеют определенный физический смысл. Почленным делением отдельных слагаемых уравнений системы (2.3.3) могут быть получены безразмерные группы Fo = ax/R и Fom = = amx/R — критерии гомохронности полей температуры и потенциала переноса влаги (тепловой и массообменный критерии Фурье). Отношение этих критериев дает критерий Lu == йт/а, представляющий собой меру относительной инерционности полей потенциала переноса влаги и температуры в нестационарном процессе сушки (критерий Лыкова). Критерий Ко = Гс Дц/(с А0) есть мера отношения количеств теплоты, расходуемых на испарение влаги и на нагрев влажного материала (критерий Косо-вича). Специфическим для внутреннего тепло- и массопереноса является критерий Поснова Рп = 6Д0/Ам, который представляет собой меру отношения термоградиентного переноса влаги к переносу за счет градиента влагосодержания. Независимым параметром процесса является критерий фазового превращения е.  [c.108]


    Такой характер распределения температуры и концентрации обусловлен аналогией или, как принято говорить, подобием процессов диффузии и теплопроводности. Несмотря на интенсивный тепло- и массообмен в пламени, реакция протекает как бы в адиабатических условиях. Диффузионный перенос недостающего компонента смеси из данного слоя как раз компенсируется соответствующим переносом тепла. Сумма тепловой и химической энергии в каждом слое фронта пламени постоянна, если молекулярные веса компонентов значительно не отличаются друг от друга, т. е. практически [c.20]

    Несмотря на то что кинетика простых химических реакций не зависит от масштаба эксперимента, это не дает оснований непосредственно переносить результаты лабораторных исследований на промышленные установки. Любой реальный химический процесс, особенно протекающий в больших масштабах, всегда сопровождается переносом реагирующих веществ и продуктов реакции с одновременным выделением или поглощением тепла. Эти процессы сложным образом зависят от величины и геометрии реактора. В итоге протекание процесса сильно зависит от масштаба реактора. Так, при увеличении его диаметра возможно снижение эффективности, уменьшение выхода основного продукта и образование нежелательных побочных продуктов, которых не было при лабораторных исследованиях. Практически это означает, что для переноса результатов лабораторных исследований в масштаб завода надо в несколько этапов воспроизводить исследуемый процесс, переходя от меньших масштабов к большим, проходя через этапы пилотных и полупромышленных установок. При этом должны быть выдержаны постоянными критерии подобия — безразмерные величины, составленные из комбинаций различных физических величин. [c.322]

    Прогрессивное значение теории подобия и моделирования, позволяющей быстрее и экономичнее исследовать процессы и с достаточной степенью надежности переходить от лабораторных масштабов к производственным, сохраняя при этом интенсивность и другие оптимальные показатели данного процесса, по достоинству оценено в ряде отраслей техники, где теория подобия нашла широкое применение (котлостроение, кораблестроение, самолетостроение, строительство гидростанций и т. д.). В химической технологии обобщение экспериментальных данных методами теории подобия внесло большой вклад в изучение закономерностей процессов гидравлики, тепло- и массопередачи. [c.66]

    Для обобщения экспериментальных данных и определения допустимой области их использования широко применяют выводы теории подобия [13]. Такие методы обобщения оказались плодотворными при изучении не только процессов гидродинамики, но и процессов тепло- и массопередачи. [c.24]

    С помощью теории подобия решаются задачи 1) выбора обобщенных переменных (критериев подобия-, симплексов подобия геометрии системы, начальных и граничных условий), являющихся аргументами решения системы дифференциальных уравнений, описывающих соответствующие процессы (гидродинамики, тепло- и массообмена), и 2) нахождения условий подобия двух однородных процессов. [c.24]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Для мелкодисперсных потоков взвесей интересно установить подобную аналогию между процессами переноса тепла и импульса твердыми частицами. Такой подход основан на подобии формы записи уравнений переноса для частиц [c.244]

    Впервые моделирование было использовано в аэро- и гидромеханике [4-7]. С этой целью была развита теория подобия, основанная на физическом моделировании, в котором природа процесса и модели одинаковая. В химической технологии физическое моделирование широко используют для изучения тепловых и диффузионных процессов [8]. В химическом реакторе протекают химические реакции, и происходит перенос тепла и вещества. Их взаимное влияние и результаты процесса зависят от размера и типа реактора. Поэтому для изучения химических процессов и реакторов теорию подобия [9, 10] применяют весьма ограниченно [11-13]. Для изучения этих процессов используют преимущественно математическое моделирование [11-16], поскольку оно позволяет тождественными уравнениями описывать свойства процесса различной природы. Математическая модель может быть знаковой, представленной уравнениями, и реальной, представленной физическим объектом, как правило ЭВМ. В дальнейшем под моделью подразумевается знаковая или реальная математическая модель, адекватно отражающая физико-химические превращения и явления переноса тепла и вещества в изучаемом процессе и используемая для масштабного перехода. Статистические модели, описывающие процесс как черный ящик , для этой цели не пригодны. [c.5]

    Безразмерный вид ф-ции Q зависит от вида ур-ний и граничных условий и обычно не м.б. записан в общей форме. Однако сам факт существования зависимости (1) приводит к разл. выводам. Напр., при решении задачи оценки нек-рых параметров начальных ур-ний по опытным данным выражение (1) позволяет установить, какими критериями определяется безразмерный комплекс, включающий неизвестный параметр. Далее можно попытаться найта данную связь в виде нек-рой принятой (иапр., степенной) функцион. зависимости от остальных критериев. Для этого вьшолняют необходимый объем экспериментов в разл. условиях (при к-рых изменяются значения критериев) и с помощью выбранной зависимости осуществляют соответствующие расчеты наблюдаемых результатов. Полученное соотношение м.б. использовано уже для анализа целой группы объектов, критерии подобия к-рой отвечают изученной области изменения их значений. Такие исследования часто проводят при решении проблем гидромеханики, тепло- и массообмена и т.п. в химико-технол. процессах. [c.595]

    Изучение гидродинамики потоков, а также тепло- и массопередачи показывает, что подобны не только процессы тепло- й массо-пёр бдачи, но и процесс передачи импульса количества движения иливпутрепнего трепня в потоке. Подобие указанных процессов назыМется гидродинамической, или тройной, аналогией. Гидродинамическая аналогия процессов тепло- и массопередачи позволяет определять коэффициенты тепло- и массопередачи на основе коэффициентов трения. [c.100]

    Даже в сравнительно простом случае, когда необходимо одновременное подобие двух процессов (выделение тепла реакции и отвод тепла через стенку), соблюсти подобие очень трудно. Действительно, количество выде 1яемого тепла тем больше, чем больше объем реакционной зоны. А отвод тепла пропорционален поверхности теплообмена. Соотношение этих двух процессов определяется отношением поверхности к объему — удельной поверхностью. Но удельная поверхность, как известно, обратно пропорциональна [c.15]

    Как указывалось, полное подобие распределения скоростей, температур и концентраций возможно лишь, когда тепловой пограничный слой совпадает по толщине с гидродинамическим, т. е. а = V и Рг = г/с = 1, а диффузионный подслой имеет ту же толщину, что и гидродинамический. Последнее условие соответствует О = V, или Рг = /0 1. Таким образом, существование аналогии между переносом массы, тепла и механической энергии (трением) ограничено следующими условиями она соблюдается лишь в условиях внутренней задачи, при Рг = Рг = 1, а также при отсутствии стефанового потока (см. стр. 400), который возможен только в процессах массопереноса. [c.406]

    Позднее Релей дал по.лную теорию возникновения подобных фигур как в процессах переноса тепла (температуропроводность), так и в процессах переноса массы (диффузия). Он указал что подобие этих процессов возможно в тех случаях, когда постоянные коэффициенты в дифференциальном уравнении, описывающем явления переноса — коэффициент температуропроводности а и коэффициент диффузии О данного вещества, подчиняются уравнению [c.151]

    Критерии подобия являются основой для масштабного перехода. Критерии часто вступают в противоречие друг с другом. При рассмотрении процессов, протекающих в химических реакторах, важную роль играет понятие сопротивления, определяемое как отношение некоторой движущей силы к переносимым за едииицу времени количеству движения, массе, теплу или к количеству превратившегося химического вещества. При увеличении масштаба относительные величины соответствующих сопротивлений меняются. [c.230]

    Введем безразмерные симплексы, харак 1еризуюш,ие подобие процессов передачи тепла в трехслойном ребре  [c.228]

    Проводя аналогию между процессами теплопередачи и диффузии, приходится отметить, что в теплопередаче гидродинамическое подобие потоков полностью характеризуется критерием Рейнольдса только при вынужденном движении с хорошо развитой турбулентностью ири отсутствип такого движ ения, а также в потоках ламинарных и переходных режимов перенос тепла за счет естеств( Нпой конвенции характеризуется критерием Грасгофа. Аналогичный по смыслу критерий введен и для диффузионных процессов [c.34]

    Необходимыми условиями подобия процессов переноса тепла является, кроме того, соблюдение гидродинамического и геометрического подобия. Первое характеризуется (см. стр. 80) равенством критериев Но, Ке и Рг в сходственных точках подобных потоков, а второе — постоянством отноше1гия основных геометрических размеров стенки 1, 2,. . 1п к некоторому характерному размеру. [c.281]

    Методы математического моделирования, основанные на теориях подобия [27, 28],, позволившие добиться исключительно больших успехов в ряде нехимическлх отраслей наук (аэро-, газо- и гидродинамике, тепло- и электротехнике, механике и др.), применительно к химии не оправдали оптимистических прогнозов. Дьяконов Г.К.[29] в результате своих многолетних исследований пришел к выводу об ограниченных возможностях теорий химического подобия, в частности, широко известных четырех критериев химического подобия Д.Дамкелера для моделирования химических процессов. Весьма скромные результаты были получены также при моделировании химических систем на основе принципа ( закона ) физической химии о соотвегственных состояниях. [c.12]

    Создание лабораторных и других уменьшенных по сравнению с промышленными установок для изучения процессов, протекающих при термической переработке углеродистых материалов в кольцевых печах, требует моделирования наиболее существенно влияющих факторов. Наиболее Важным представляется сохранение теплового и гидравлического подобия. В настоящей работе рассмотрены некоторые принципы теплового и гидравлического моделирования для случая непосредственного обогрева угольной загрузки, свободно лежащей на поверхности вращающегося кольцевого пода. Тепло подводится здесь в результате сжигания в подсводовом объеме, над [c.125]


Библиография для Подобие тепловых процессов: [c.167]    [c.363]    [c.207]   
Смотреть страницы где упоминается термин Подобие тепловых процессов: [c.595]    [c.98]    [c.30]    [c.332]   
Теоретические основы типовых процессов химической технологии (1977) -- [ c.75 ]

Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.384 , c.578 ]

Процессы и аппараты химической технологии Издание 5 (0) -- [ c.384 , c.578 ]




ПОИСК







© 2025 chem21.info Реклама на сайте