Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины дегидрогенизация

    Равновесная глубина дегидрогенизации перечисленных реакций увеличивается с повышением температуры и уменьшением давления. Влияние температуры на дегидрирование парафиновых углеводородов до олефинов в условиях термодинамического равновесия показано на рис. 1 и в табл. 2. Вполне очевидно, что 50%-ная конверсия парафинов Сд и выше в альфа- [c.190]

    Определенная степень изомеризации наблюдалась в присутствии окислов или сульфидов некоторых металлов, например молибдена или вольфрама. Вообще же зти вещества не являются специальными катализаторами изомеризации. Высокие температуры, требуемые для осуществления процесса в присутствии этих катализаторов, не способствуют пи увеличению разветвленности парафинов, ни расширению пятичленного кольца в шестичленное при изомеризации циклопарафинов, так как при исследовании равновесия установлено, что эти реакции лучше идут при низких температурах. Кроме того, расход исходного вещества на такие реакции, как дегидрогенизация, термическое разложение и гидрокрекинг, увеличивается при более высоких температурах. [c.15]


    Перспективным является также направленное изменение отдельных групп веществ, например углеводородной части низко-и среднетемпературных дегтей, с тем, чтобы получить продукты с меньшим количеством классов и обогащенными отдельными соединениями [26], что позволило бы их лучше использовать для нужд химической промышленности. Теоретической базой для этого служат разработанные в органической химии методы превращений парафиновых углеводородов в ароматические, дегидрогенизации парафинов в олефины, циклизации олефинов в ароматические углеводороды, гидрирования олефинов в соответствующие парафины, дегидрогенизации циклогексанов в ароматические и другие соединения. [c.25]

    Выделение водорода. Реакцией, наиболее характерной для процесса дегидрогенизации, является выделение водорода. При дегидрогенизации парафинов происходит выделение двух атомов водорода с образованием олефинов при дальнейшей дегидрогенизации олефинов выделяются еще два атома водорода и образуются диены дегидрогенизация ароматических углеводородов с боковой группой парафинового ряда происходит подобно дегидрогенизации парафинов дегидрогенизация шестичленных нафтенов происходит с выделением шести водородов с образованием бензола и его гомологов. Выше были приведены отдельные примеры этих реакций образование этилена из этана, бутилена — из бутана, бутадиена — из бутилена, стирола — из этилбензола, бензола и толуола — из циклогексана и метилциклогексана. В надлежащих условиях температуры, при надлежащем катализаторе эти реакции протекают исключительно гладко, дают также технически, а иногда даже химически чистый водород и представляют большой практический интерес (см. ч. IV). [c.547]

    Единственным слабым пунктом теории перекисей является то обстоятельство, что ненасыщенные углеводороды обладают значительно меньшей склонностью к детонации, чем парафины однако они имеют ярко выраженную склонность образовывать перекиси. Это видимое противоречие приходится объяснять тем, что степень детонации может обусловливаться не столько количеством, сколько характером перекисей, а также дополнять теорию перекисей —теорией свободного водорода, выдвинутой Льюисом. Последний считает первичным процессом окисления парафинов дегидрогенизацию их, в результате чего образуются ненасьпценные углеводороды и водород. Последний и является основной причиной возникновения детонации в двигателе. Можно думать, что получающийся в результате дегидрогенизации водород находится в атомарном состоянии, т. е. что процесс распада парафиновых углеводородов сопровождается химической активацией молекул водорода. Как известно, атомарный водород может мгновенно соединяться с кислородом, причем это соединение связано с выделением огромного количества энергии. Таким образом, получающееся соединение можно рассматривать как активный центр, который может активировать молекулы горючей смеси и тем самым сильно способствовать ускорению химической реакции. Подтверждением теории свободного водорода (как дополнительного фактора детонации) и является хорошо известная ббльшая склонность к детонации нормальных углеводородов парафинового ряда по сравнению с нормальными углеводородами олефинового ряда. Можно также полагать, что в случае непосредственно окисляемых непредельных углеводородов первично получающиеся нестойкие перекиси успевают превратиться в стойкие перекиси, тогда как в случае посредственно окисляемых предельных углеводородов этот Процесс завершиться не успевает. Это тем более важно, что именно нестойкие формы перекисей глав- [c.356]


    В ранних работах по изомеризации парафинов применялся лишь один метод анализа, основывавшийся на тщательной фракционной разгонке продуктов изомеризации и определении их физических констант. Циклопарафины представляли специальный случай, где анализ можно было основывать на избирательной дегидрогенизации алкилцикло-гексанов в соответствующие ароматические углеводороды. За последние годы развитие методов инфракрасной спектроскопии и масс-спектро-скопии для полного анализа сложных смесей изомеров оказало необходимую помощь в изучении реакции изомеризации. [c.15]

    Особенность процесса риформирования, как было показано выше, состоит в том, что основные реакции риформинга сопровождаются значительным увеличением объемов и протекают, как правило, с интенсивным поглощением тепла. Так, при реакции дегидрогенизации нафтенов объем продуктов реакции увеличивается в четыре раза (выделяются три моля водорода) и поглощается теплоты 221 Дж/моль, при реакции дегидроциклизации парафинов объем возрастает в пять раз и поглощается 260 кДж/моль (см. 2.2). Указанные особенности оказывают существенное влияние на конструктивное оформление и их необходимо учитывать при выборе технологических параметров процесса. [c.13]

    При высоких температурах, если п >- 6, дегидрогенизация парафинов предпочтительно протекает с образованием ароматических углеводородов, а не олефинов  [c.11]

    Повышение давления снижает термодинамически возможный выход ароматических углеводородов при дегидроциклизации парафинов в большей степени, чем при дегидрогенизации циклогексанов. Объясняется это следующим. Для реакции [c.249]

    Увеличение давления в т раз увеличивает значение Кр, необходимое для достижения заданной глубины превращения х, в случай дегидрогенизации циклогексанов в т , а при дегидроциклизации парафинов — в т раз. [c.249]

    Адсорбция атомов углерода на соседних металлических центрах сопровождается разрывом связей С—Н. Дальнейшая дегидрогенизация атомов углерода приводит к образованию кратных связей углерод—металл, что обуславливает ослабление связей С—С и в конечном счете их.разрыв. Образующиеся фрагменты подвергаются гидрированию в метан. Предполагают, что при гидрогенолизе более высокомолекулярных парафинов образуются несколько иные про- [c.43]

    Следовательно, окисление высокомолекулярных углеводородов гибридного строения идет в основном в двух направлениях во-первых, в направлении окислительного крекинга, сопровождающегося отщеплением и окислением парафино-циклопарафиновых заместителей в ароматических ядрах, и, во-вторых, в направлении дегидрогенизации гексаметиленовых колец до ароматических [c.133]

    В первой ступени дегидрогенизации было получено 26,7% вес. -ароматических углеводородов, из них 21,3% приходилось на углеводороды с бензольным кольцом в молекуле и 5,4% — на долю углеводородов, содержащих нафталиновое ядро. Парафино-циклопарафиновые углеводороды составляли 71%. Но углеводороды эти по своим свойствам заметно отличаются от взятой для дегидрогенизации предельной части высокомолекулярных углеводородов. Они [c.221]

    Наряду с реакциями полимеризации и разложения идет циклизация и дегидрогенизация олефинов. Наличие насыщенных углеводородов в продуктах крекинга олефинов показывает, что при распаде не только образуются два олефина меньшего молекулярного веса, но протекает реакция перераспределения водорода с образованием системы парафин — диолефин. Последний, будучи весьма неустойчивым, вступает в реакции конденсации с олефинами. [c.29]

    Каталитическая дегидрогенизация высших парафинов имеет большое значение в связи с проблемой промышленного иолучения синте- тических смазочных масел. Этот вопрос является еще почти пе изученным. Попытки иодвергпуть высшие парафины дегидрогенизации приводят обычно к циклизации их с превращением в ароматические углеводороды. Первые положительные результаты в указанном на- [c.242]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]


    В процессах обессеривания лигроинов и газойлей при давлении 18— 30 ат и температуре 260—427° [4, 13] в качестве катализатора широкое применение нашел молибдат кобальта на активированной окиси алюминия. При этих условиях происходит гидрогенизация олефиновых углеводородов, но практически не идет гидрогенизация присутствующих в сырье ароматических углеводородов. Добавление солей щелочных металлов к этому катализатору подавляет гидрогенизацию олефиновых углеводородов, ие тормозя, однако, гидрогенизации сернистых соединений 5]. При более высокой температуре или при более низком давлении становится заметной реакция дегидрогенизации присутствующих в лигроине нафтенов до ароматических углеводородов и водорода (как в гидроформинге). При регулировании рабочих условий процесса можно обеспечить образование небольшого избытка водорода сверх того количества его, которое необходимо для обеспечения гидрогенизации олефинов и обессеривания [2] процесс становится независимым от внешнего поступления водорода. При этих условиях управление тепловым режимом реактора осуществляется легче, так как теплота, выделяющаяся при экзотермической реакции гидрогенизации олефинов и сернистых соединений, почти компенсируется теплотой, поглощаемой при эндотермической реакции дегидрогенизации. Однако при таких, более жестких условиях работы скорость гидрогеиизации олефинов [5] может снижаться, приближаясь к равновесию олефин — парафин, и появляется тенденция к отложению угля на катализаторе. Необходимость чередования процесса с регенерацией путем продувки воздухом для удаления с катализатора углеродистого осадка ограничивает процесс, сокращая продолжительность рабочих периодов по сравнению с процессом типичной обычной гидрогенизации. [c.279]

    Сущность процесса заключается в обогащении бензина ароматическими углеводородами за счет дегидрогенизации шестичленных нафтеновых и дегидроциклизации нормальных парафиновых углеводородов. Значительную роль в повышении октанового числа играет изомеризующая активность катализатора, позволяющая поевращать пятичленные насЬтены в шестичленные (с последующим дегидрированием до ароматических) и легкие -парафины, образующиеся в результате гидрокрекинга, в изопарафины. [c.39]

    Риформинг углеводородного сырья приводит к накоплению в последнем бензиновых фракций и изменению октанового числа от 20—60 у исходного сырья до 67—77 у конечного продукта. Повышенные октановые числа (в чистом виде) бензинов термического крекинга и риформинга по сравнению с некоторыми бензинами прямой гонки и исходным сырьем (в случае, например, термического риформинга тяжелых бензинов и легких лигроинов) обусловлены резким отличием их химического состава от состава природных бензинов. Протекающие в процессе крекинга или риформинга термические реакции распада и дегидрогенизации углеводородов исходного сьсрья приводят в ко-1гечном счете к обогащению бензинов олефинами и ароматическими углеводородами за счет парафинов и нафтенов. Таким образом, бензины крекинга и ри-формйнга отличаются от бензинов прямой гонки прежде всего повышенной ненредельностью и большим содержанием ароматических углеводородов. [c.74]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Гагы деструктивной гидрогенизации нефтяного сырья на TOSO объэмн. % состоят из водорода. Остальное составляют метановые углеводороды. Газы каталитической дегидрогенизации парафинов и олефинов, а также каталитической циклизации представляют собой водород с примесью метана, этана, этилена и неугле-водорс дных компонентов. Газы каталитической дегидрогенизации нафтенов состоят почти целиком из водорода. [c.16]

    Дальнейшее развитие метод выделения и идентификации углеводородов нашел в работах Н. Д. Зелинского, который показал, что при пропускании смеси нафтенов и парафинов над платиновым, палладиевым пли никелевым катализатором при температура около 300° С происходит дегидрогенизация шестичленных нафгенов с образованием ароматических углеводородов [15]. Известно, что реакция эта обратима, и при температурах 120 — [c.79]

    Бы.ю установлено, что величина свободной энергии образования из элементом парафинов (начиная с этана) при температурах 400—500° С и выше поло /кительпа. Это значит, что при температурах к])екинга все парафины нестабильны, и термодинамически возмо/кен их распад па элементы. Практически этот распад начн-нается при 700° С и выше, а вначале происходит распад связи С—С о выделением парафина и олефина и дегидрогенизация с выдоиепием олефина и водорода. [c.410]

    Вероятность иозпикноиения двух последних реакций у различных углеводородов неодинакова. Дегидрогенизация парафинов — это реакция термодинамически значительно более высокотемпературная, чем распад связи С—С. Иллюстрацией к этому могут служить температуры, соответствующие нулевому значению свобод- [c.410]

    В продуктах расщепления нормальных парафинов олефины отсутствуют. Отношение изопарафины и-парафины выше равновесного для изо-С К-С4 в 6 раз, для ызо-Сб "Сб в 3 раза. Отсутствуют углеводороды с четвертичным углеродным атомом. Непревращенное сырье не изомеризовано. Бутилбензол в основном деалкилируется с образованием бутанов и бензола, а также толуола и пропана. В тетралине происходит раскрытие кольца и дегидрогенизация с образованием значительного количества нафталина [c.308]

    Если такой механизм реакции справедлив и в некоторых случаях можно ожидать полной дегидрогенизации атомов углерода, то при гидрогенолизе парафинов может происходить зауглероживание металлических центров платиновых катализаторов риформинга. Справедливость такого предположения подтверждает промышленная практ ика каталитического риформинга,[761, Для подавления акти.в-ност кайлнШбрО риф рмйнга реакциях гидрогенолиза применяют разные методы (осернение, модифицирование добавками некоторых металлов— см. гл. 2), в результате чего эти реакции перестают играть существенную роль в нормальных условиях процесса. [c.44]

    При каталитическом риформинге происходит ароматизация бензинов за счет дегидрогенизации шестичленных нафтенов и дегид-роциклизации парафинов. Для насыщения непредельных побочных продуктов крекинга риформинг проводят в присутствии водорода. [c.69]

    Авиационные масла изготовлялись иутем полимеризации высших олефинов (главным образом состава Сд—С д), получаемых из синол-процесса и продуктов крекинга парафина, а также в результате каталитической дегидрогенизации соответственных фракций синтина. [c.427]

    Наличие конденсированных полициклических гексаметиленовых структур в гидрогенизатах высокомолекулярных ароматических углеводородов из ромашкинской нефти доказано экспериментально. Фракция гидрогенизата (табл. 41, фракция 1 ромашкинской нефти) была подвергнута избирательной дегидрогенизации в жидкой фазе при 320° С в присутствии платины, отложенной на угле. После нагревания этой фракции в присутствии катализатора в течение 10 ч показатель преломления ее резко повысился. Хроматографический анализ дегидрогенизата показал, что парафино-циклопарафиновые углеводороды составляли в нем только 40%, а 60% составляли углеводороды, содержащие ароматические ядра. Следует отметить, что на долю углеводородов бензольного ряда приходилось меньше одной третьей части (18%) всех ароматических углеводородов  [c.231]

    Трудность разделения гибридных структур высокомолекулярных углеводородов и отсутствие достаточно специфических реакций предельных (парафино-циклопарафиновых) углеводородов гибридного строения являются причиной слабой изученности химической природы этой группы высокомолекулярных углеводородов нефти. До сих пор почти отсутствуют данные о соотношении пента- и гексаметиленовых колец в составе предельной высокомолекулярпой углеводородной части сырых нефтей и нефтепродуктов. В бензино-керосиновых фракциях нефтей для решения этой задачи успешно была использована открытая Зелинским [74] реакция избирательной дегидрогенизации гексаметиленов в присутствии платинового катализатора. За последнее время появились сообщения об использовании этой реакции и при изучении строения таких сложных органических соединений, как политерпены, стерины, желчные кислоты, витамины, гормоны и др. [75]. Однако в литературе не встречалось указаний об использовании метода избирательной каталитической дегидрогенизации нри изучении строения предельных высокомолекулярных углеводородов нефти. Нам представлялась весьма заманчивой и перспективной возможность использования этого метода в комбинации с хроматографией и спектроскопией (инфракрасной и ультрафиолетовой) для более глубокого познания химического строения предельной части высокомолекулярных углеводородов нефти гибридного характера. Но прежде чем воспользоваться этим методом, нада было доказать его применимость для решения указанной выше задачи и проверить экспериментально надежность и воспроизводимость получаемых при этом результатов, показать пределы точности метода. [c.213]

    Суммарный эффект трехстуненчатой дегидрогенизации высокомолекулярных парафино-циклопарафиновых углеводородов из ромашкинской нефти следующий образовалось 57% вес. (на исходную фракцию) ароматических углеводородов,. в том числе 38% углеводородов ряда бензола и 19% ряда нафталина. [c.224]

    Были сняты также спектры поглощения в ультрафиолетовой области для исходной фракции парафино-циклопарафиновых углеводородов и трех групп углеводородов, выделенных при хроматографическом разделении продуктов дегидрогенизации. Растворы фракций парафино-циклопарафиновых углеводородов не дали заметного поглощения при концентрациях 0,06% вес. Спектры поглощения моноциклоароматических и бициклоароматических углеводородов снимались в растворах изооктана концентрациями 10 и 10 молъ л. [c.226]

    Таким образом, проведя реакцию дегидрогенизации парафино-циклопарафиновых углеводородов, зателГ применяя хроматографическое разделение, а также спектральные и химические методы исследования продуктов дегидрогенизации и используя закономерности в изменении физико-химических свойств углеводородов в зависимости от строения, можно получить достоверные экспериментальные данные об элементах структуры высокомолекулярной части парафино-циклопарафиновых углеводородов нефти. [c.228]


Смотреть страницы где упоминается термин Парафины дегидрогенизация: [c.90]    [c.97]    [c.42]    [c.48]    [c.356]    [c.196]    [c.88]    [c.110]    [c.414]    [c.486]    [c.60]    [c.204]    [c.322]    [c.215]   
Переработка нефти (1947) -- [ c.14 ]

Химия и технология синтетических моющих средств Издание 2 (1971) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация



© 2025 chem21.info Реклама на сайте