Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теория электролитической диссоциации Диссоциация оснований, кислот и солей

    Согласно классической теории электролитической диссоциации С. Аррениуса кислоты, соли, основания (электролиты) в водных и некоторых неводных растворах существуют в виде независимых друг от друга частиц — ионов, образовавшихся при распаде молекул. Такие частицы (катионы и анионы) существуют в растворах независимо от того, наложено или нет на раствор электрическое напряжение. С. Аррениус ввел представление о частичной диссоциации электролитов в растворах. [c.191]


    Согласно теории электролитической диссоциации кислоты, основания и соли в водном растворе распадаются на положительно (катионы) и отрицательно заряженные ионы (анионы). Например  [c.85]

    Кислотами с позиций теории электролитической диссоциации называются вещества, диссоциирующие в растворах с образованием ионов водорода, С точки зрения протонной теории кислот и оснований к кислотам относятся вещества, способные отдавать ион водорода, т, е. быть донорами прогонов,, Наиболее характерное химическое свойство кислот — их способность реагировать с основаниями (а также с основными и амфотерными оксидами) с образованием солей, например  [c.31]

    Ионные реакции и уравнения. Согласно теории электролитической диссоциации, реакции между кислотами, основаниями и солями в водных растворах протекают между ионами, на которые распадаются молекулы этих веществ. [c.209]

    В 1887 г. С. Аррениусом была создана теория электролитической диссоциации, по которой кислотам и основаниям можно дать следующие определения. Кислоты — это электролиты, отщепляющие в водном растворе ионы H" ", а основания — электролиты, отщепляющие в растворе ионы ОН . В результате ассоциации этих ионов между кислотой и основанием происходит реакция нейтрализации с образованием воды и соответствующей соли. [c.166]

    Кислотно-основные явления. Теория электролитической диссоциации Аррениуса объясняет кислотные свойства растворов присутствием ионов водорода, а основные — ионов гидроксила. Нейтрализация рассматривается как реакция образования воды и соли. Поскольку степень диссоциации может быть определена посредством измерения электропроводности, то сила кислот и основании сопоставляется по их электропроводности. Эти представления иногда называют водной теорией кислот и оснований или теорией их электролитической диссоциации. [c.159]

    Домашняя подготовка. Теория электролитической диссоциации Аррениуса. Соли, кислоты и основания с точки зрения теории электролитической диссоциации. Сильные и слабые электролиты. Зависимость степени электролитической диссоциации от концентрации раствора. Ступенчатая диссоциация многоосновных кислот и многокислотных оснований. Равновесие в растворах электролитов. Приложение закона действия масс к электролитической диссоциации. Константа диссоциации. Произведение растворимости. [c.117]


    Согласно теории электролитической диссоциации, молекулы солей, кислот и оснований в водном растворе распадаются на положительно и отрицательно заряженные ионы. [c.96]

    С помощью теории электролитической диссоциации даются определения кислотам, основаниям и солям кислоты выделяют в раствор ионы водорода, основания — гидроксид-ионы, а соли — катионы металлов (и аммония) и анионы кислотных остатков. [c.114]

    Значение этого коэффициента было экспериментально определено Аррениусом и объяснено на основе его теории электролитической диссоциации. Из исследований Рауля (1882—1886) было известно, что криоско-ническим методом нельзя определить точные молекулярные веса солей, кислот и оснований в водном растворе. Аррениус сразу н е высказал предположение, что это обусловлено диссоциацией названных веществ на ионы,, которые, подобно молекулам, понижают точку замерзания растворителя. Если соединение в присутствии воды дает два иона, понижение точки замерзания в случае разбавленных растворов, в которых происходит полная диссоциация, будет вдвое большим, чем вызванное недиссоциированной молекулой в тех н е условиях электролиты, образующие три иона, дают втрое большее понижение и т. д. При делении величины молекулярного-понижения температуры замерзания электролита на постоянную растворителя получают значение коэффициента I Вант-Гоффа. Для водных рас-д [c.380]

    Аррениус (1887) объяснил эти результаты с помощью своей теории электролитической диссоциации. Согласно этой теории, соли, кислоты и основания при растворении в воде самопроизвольно диссоциируют на ионы например, [c.163]

    Теория электролитической диссоциации позволила дать научное определение понятиям кислота , основание , буферная емкость раствора , создать теорию индикаторов, объяснить процессы ступенчатой диссоциации, гидролиза солей и т. д. Ниже рассмотрены некоторые примеры приложения это["1 теории к химическому равновесию в растворах. [c.38]

    Сванте Аррениус (1859—1927), профессор университета в Стокгольме и директор Нобелевского института. Предложил теорию, объясняющую свойства растворов солей, кислот и оснований и получившую название теории электролитической диссоциации. Аррениусу принадлежит также ряд исследований по астрономии, космической физике и в области приложения физико-химических законов к биологическим процессам. [c.233]

    Дальнейшее развитие химии и использование неводных растворителей привело к необходимости объяснить процессы, протекающие в этих растворителях. Например, хлорид аммония, ведущий себя как соль в водном растворе, при растворении в жидком аммиаке проявляет свойства кислоты, растворяя металлы с выделением водорода. Мочевина С0(КНг)2, растворяясь в безводной уксусной кислоте, проявляет свойства основания, в жидком аммиаке — свойства кислоты, а ее водные растворы нейтральны. Все эти факты нельзя было объяснить на основании теории электролитической диссоциации Аррениуса. В связи с этим определение кислот и оснований были пересмотрены. [c.75]

    Таким образом, теория электролитической диссоциации объясняет общие свойства кислот присутствием в их растворах ионов водорода, а общие свойства оснований — присутствием в их растворах гидроксид-ионов. Это объяснение не является, однако, общим. Известны химические реакции, протекающие с участием кислот и оснований, к которым теория электролитической диссоциации неприменима. В частности, кислоты и основания могут реагировать друг с другом, не будучи диссоциированы на ионы. Так, безводный хлороводород, состоящий только из молекул, легко реагирует с безводными основаниями. Кроме того, известны вещества, не имеющие в своем составе гидроксогрупп, но проявляющие свойства оснований. Например, аммиак взаимодействует с кислотами и образует соли (соли аммония), хотя в его составе нет групп ОН. Так, с хлороводородом он образует типичную соль — хлорид аммония  [c.244]

    Соли рассматривают обычно как продукты замены атома водорода,в кислотах на атомы металлов или гидроксильных групп в основаниях на кислотные остатки. С точки зрения теории электролитической диссоциации солями называются сложные вещества, которые при растворении в воде (или при плавлении) дают в растворе катионы металлов и анионы кислот. [c.245]

    Приведем в соответствии с теорией электролитической диссоциации определения кислот, оснований и солей. [c.62]

    На основе теории электролитической диссоциации даются определения и описываются свойства кислот, оснований и солей. [c.74]

    Согласно теории электролитической диссоциации все общие характерные свойства кислот — кислый вкус, изменение цвета индикаторов, взаимодействие с основаниями, основными оксидами, солями — обусловлены присутствием ионов водорода Н . [c.74]

    На основе теории электролитической диссоциации дайте определения понятиям кислота, основание, соль. [c.77]


    С помощью теории электролитической диссоциации дают определения и описывают свойства кислот, оснований и солей. [c.109]

    Другим недостатком обычных, основанных на теории электролитической диссоциации представлений о кислотах и основаниях является то обстоятельство, что они применимы только к водным растворам и становятся непригодными при переходе к растворам в других растворителях. В справедливости этого можно убедиться на следующих примерах. Хлорид аммония по его поведению в водных растворах мы привыкли рассматривать как типичную соль в то же время растворенный в жидком аммиаке он ведет себя как сильная кислота, проявляя все типичные свойства кислот, вплоть до способности растворять металлы с выделением водорода, хотя ионов Н в этих растворах, очевидно, быть не может. Мочевина СО(ЫН2)з, нейтральная в водных растворах, ведет себя в жидком аммиаке как кислота, а в безводной уксусной кислоте,— как основание, хотя она, разумеется, ионов ОН " не образует. Очень сильная в водных растворах азотная кислота, растворенная в жидкой НР или в безводной Н,304, ведет себя как основание. Подобных фактов, не укаладываю-щихся в рамки теории электролитической диссоциации, можно было бы привести много. Они говорят о неудовлетворительности тех представлений о кислотах и основаниях, которые введены в науку этой теорией, и требуют за.чены старых представлений новыми, более общими и согласными с опытом. [c.159]

    Первые кинетические исследования некоторых каталитических реакций, таких, как гидролиз эфиров и инверсия сахара (Аррениус Оствальд, после 1890 г.), указали на суп ествование соотношения между скоростью реакции и силой кислоты, примененной в качестве катализатора. В соответствии с теорией электролитической диссоциации каталитическое действие кислот приписывалось исключительно водородным ионам, а в случае основного катализа — гидроксильным ионам раствора. Анионам кислот, соответственно катионам оснований, применяемым в качестве катализаторов, не приписывали никакого каталитического действия. Концентрацию водородных и гидроксильных ионов измеряли, как правило, методом электропроводности. Однако вскоре было замечено, что только в некоторых случаях и в определенных условиях скорость реакции является линейной функцией концентрации гидроксильных или водородных (т.е. гидроксониевых) ионов, измеренной кондуктометрическпм путем. Главным образом в случае сильных кислот рост стехиометрической концентрации кислоты всегда обусловливает значительно большее увеличение скорости реакции, чем степени диссоциации , вычисленной из электропроводности раствора. Было такн<е замечено, что прибавление нейтральных солей, т.е. солей, не являюш ихся кислыми или основными и не обладаюш их общим с кислотами ионом, иногда значительно изменяет скорость реакции (солевые эффекты). [c.221]

    Основы теории электролитической диссоциации. В 1887 г-Вант-Гофф установил, что определенное экспериментально осмотическое давление в растворах солей, кислот и оснований превышает вычисленное по уравнению (2.59). Подобные отклонения измеренных величин от вычисленных по соответствуюш,им уравнениям наб.5юдаются в сторону повышения для температуры кипения и в сторону понижения для температуры отвердевания этих растворов. Так, например, молекулярная масса Na l равна 58,5, а на основании криоскопических измерений она оказалась равной при-щ мерно 30. Не зная, чем можно объяснить эти отклонения, но стремясь сделать соответствующие уравнения пригодными для этих растворов, Вант-Гофф ввел в них поправочный множитель i, названный изотоническим коэффициентом . Подставляя коэффициент i в уравнение для расчета осмотического давления и в уравнения законов Рауля, получаем соотношения, пригодные для описания разбавленных растворов всех веществ, в том числе и для растворов солей, кислот и оснований  [c.246]

    Протонная теория кислот и оснований. Теория электролитической диссоциации неприменима к взаимодействиям, не сопровождающимся диссоциацией на ионы. Например, аммиак, реагируя с безводным фтористым водородом, образует соль фторид аммония МНз + + НР = ЫН4р. Аммиак, не имея в своем составе гидроксильной группы, ведет себя как основание. [c.170]

    Представления о кислотах и основаниях, основанные на теории электролитической диссоциации, применимы лишь при условии, что веш,ества реагируют в водном растворе. Однако эти представления не объясняют процессов, протекающих в неводных растворах. Так, например, если хлорид аммония в водном растворе ведет себя как соль (диссоциирует на ионы NH и С1 ), то в жидком аммиаке он проявляет свойства кислоты — растворяет металлы с выделением водорода. Мочевина OiNHa) в жидком аммиаке проявляет свойства кислоты, в безводной уксусной кислоте — свойства основания, а в водном растворе она нейтральна. Как основание ведет себя азотная кислота, растворенная в жидком фтороводороде или в безводной серной кислоте. [c.189]

    Основные положения теории электролитической диссоциации. Диссоциация кислот, оснований и солей в воде. Катионы и анПоны. Степень диссоциации, сильные и слабые электролиты. Ионные уравнения реакций. Электролиз растворов и расплавов. [c.104]

    Теория электролитической диссоциации предусматривает гидро. шз солей слабых кислот и слабых оснований в водном растворе. Ионы растворителя соединяются с нонами растворенного электролита, — нолучаюгся иеиониаированные молекулы слабой кислоты или слабого основания. По этой причине равновесие ионизации воды [c.134]

    Сванте Аррениус разработал теорию распада молекул электролитов на 1ИОНЫ и назвал ее теорией электролитической диссоциации. На основании этой теории он дал новые определения, солям, кислотам и щелочам, которыми мы пользуемся и сейчас. [c.144]

    Теорией электролитической диссоциации нейтрализация рассматривается как процесс соединения катионов Н с анионами ОН", приводящий к образованию недиссоциированных молекул воды. Однако известно, что кислоты нейтрализуются ие только действием щелочей, но и действием солей, образованных сильным основанием и слабой кислотой (ЫагСОз, К2СО3 и т. п.). При этом реакция протекает по уравнению [c.37]

    К началу XX в. теория электролитической диссоциации достигла больших успехов. На ее основе были объяснены многочисленные и разнообразные экспериментальные данные по электропроводности растворов, осмотическому давлению, температурам замерзания и другим физико-химическим свойствам растворов. Однако ряд экспериментальных данных теория объяснить не могла. Так, константа диссоциации электролита, выражаемая уравнением типа (152.4), в широком интервале концентраций изменялась. Особенно резкая концентрационная зависимость наблюдалась у водных растворов неорганических кислот, оснований и их солей (H2SO4, НС], NaOH, K l и т. п.). Разные экспериментальные методы часто приводили к неодинаковым значениям степени диссоциации электролита в одних и тех же условиях. [c.431]

    В пользу такой трактовки реакции нейтрализации свидетельствует тот факт, что тепловой эффект ее для сильных кислот и сильных оснований практически один и тот же (57,3 кДж/моль). Однако введенное Аррениусом и Оствальдом определение кислот и оснований не является достаточно общим. Например, из формулы аммиака NHз, с точки зрения теории электролитической диссоциации, никак не следует, что это вещество способно проявлять основные свойства, особенно в отсутствие воды. Однако известно, что газообразный аммиак вступает в реакцию нейтрализации с газообразным хлористы.м водородом с образованием средней соли NH4 1. [c.94]

    Следует сказать, что теория кислот и оснований Аррениуса получила свое дальнейшее развитие в XX в. Было по-иному рассмотрено представление о природе кислотно-основного взаимодействия. Так, например, с позиций теории электролитической диссоциации аммиак NH3 никак нельзя назвать основанием. В то же время газообразный аммиак вступает в реакцию с хлоро-водородом с образованием соли NH4 I, т. е. проявляет основные свойства. Поэтому было дано следующее определение кислоты и основания  [c.91]


Смотреть страницы где упоминается термин Теория электролитической диссоциации Диссоциация оснований, кислот и солей: [c.132]    [c.73]    [c.173]    [c.38]    [c.233]    [c.245]    [c.381]    [c.100]    [c.116]   
Смотреть главы в:

Сборник задач и упражнений по химии -> Теория электролитической диссоциации Диссоциация оснований, кислот и солей




ПОИСК





Смотрите так же термины и статьи:

Диссоциация кислот

Диссоциация солей

Кислоты и их соли основаниями

Основания диссоциация

Основания и кислоты

Основания, теории

Основанне диссоциация

Теории кислот и оснований

Теория электролитической диссоциаци

Теория электролитической диссоциации

Электролитическая диссоциаци

Электролитическая диссоциация



© 2025 chem21.info Реклама на сайте