Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рубидий, цезий, франций и их соединения

    В главной подгруппе первой группы периодической системы находятся литий, натрий, калий, рубидий, цезий и франций В соответствии с номером группы в своих соединениях (в большинстве случаев ионных) они проявляют всегда степень окисления -Ы. Чисто ковалентное а—ст-связывание имеет место в газообразных молекулах Кза, Ка и т. д. Эти элементы — самые неблагородные . Их стандартные потенциалы порядка от —2,7 до —3,0 В (ср. табл. В.14). Ионные радиусы сопоставлены в табл. А.16. Обраш,ает на себя внимание тот факт, что при переходе от натрия к калию изменение радиусов оказывается, большим, чем в следующем за ними ряду элементов К—НЬ—Сз почему ). Это обстоятельство является главной причиной отличия свойств натрия от его более тяжелых аналогов. С учетом этого становится понятной аналогия в свойствах соответствующих соединений калия, рубидия и цезия. Особо следует под  [c.597]


    Атомы элементов первой группы на валентной оболочке имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы и являются типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8, у другой — по 18 электронов. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в основе деления их на две подгруппы. К главной подгруппе I группы периодической системы относятся литий, натрий, калий, рубидий, цезий и франций. В предпоследнем слое у них находится по [c.387]

    Литий, натрий, калий, рубидий, цезий и франций в соединениях проявляют степень окисления -fl. Атомы этих элементов легко отдают единственный электрон внешнего слоя и поэтому являются сильными восстановителями. Их восстановительная способность растет от лития к францию. Из всех простых веществ наиболее сильным восстановителем является франций, так как его атомы больше атомов дру- [c.89]

    Из многочисленных производных элементов подгруппы калия наибольшее значение имеют производные калия. Около 90% добываемых солей калия потребляется как удобрения (в виде KNO3, КС1, K2SO4 и др ). Соединения калия применяются также в производстве стекла, мыла и др. Соединения калия, рубидия, цезия и франция используют-<ся в медицине. [c.493]

    Однако положительные однозарядные ионы этих элементов, в виде которых все они (кроме водорода) большей частью содержатся в соединениях, различаются по числу электронов на внешнем уровне. Ион водорода Н представляет собой ядро атома, полностью лишенное электронной оболочки ион лития имеет два электрона, ионы натрия, калия, рубидия, цезия и франция содержат на внешнем уровне по 8 электронов, а однозарядные ионы меди, серебра и золота — по 18 электронов. Различия в строении электронной оболочки ионов являются одной из причин значительного отличия свойств меди, серебра и золота (и их соединений) от свойств остальных элементов первой группы (и их соединений). [c.48]

    РУБИДИЙ, ЦЕЗИИ, ФРАНЦИЙ И ИХ СОЕДИНЕНИЯ [c.284]

    Природные ресурсы. Содержание в земной коре составляет U 6,5-кг /. Na 2,6% К 2,5% Rb 1.5 10 % Са 6.5 10- %. Соединения Na и К очень распространены, а U, Rb, С -редкие элементы. Рубидий и цезий относятся к рассеянным элементам, их соединения - спутники калиевых минералов. Франция в природе ничтожно мало (один из изотопов Fr является продуктом а-распада актиния  [c.317]


    В подгруппу щелочных металлов периодической системы входят литий, натрий, калий, рубидий, цезий и франций. Элементы этой подгруппы 5-типа похожи друг на друга и дают большое количество аналогичных химических соединений. Так, например, они образуют самые сильные растворимые в воде основания, называемые едкими щелочами. [c.230]

    Ионный характер связей в гидроксидах и солях и способность ионов к гидратации обусловливают высокую степень диссоциации этих соединений в растворах и наличие ионов в твердых фазах. По мере перехода от лития к цезию (франций мало изучен) с ростом радиуса атома наблюдается увеличение числа молекул воды, гидратирующих ион в растворе, понижение энергии гидратации (как следствие убыли отношения заряд/радиус), понижение энергии образования кристаллических решеток солей, а также температур плавления металлов. Понижение ионизационного потенциала соответствует и росту химической активности по отношению к реакциям окисления в ряду литий — цезий. Цезий и рубидий воспламеняются на воздухе, тогда как литий на воздухе сравнительно устойчив. [c.151]

    Элементы литий Ы, натрий Ка, калий К, рубидий КЬ, цезий Сз и франций Рг составляют 1А-группу Периодической системы элементов Д. И. Менделеева. Групповое название элементов этой группы — щелочные металлы. На валентном электронном уровне атомов элементов 1А-группы содержится по одному электрону (и5 ). Вследствие этого в соединениях щелочные металлы проявляют степень окисления +1. Низкая электроотрицательность щелочных металлов обусловливает существование их в виде однозарядных катионов, образующих со многими анионами соответствующие соли. В целом свойства элементов 1А-группы отвечают свойствам типичных металлов (ионные связи в соединениях, высокие восстановительные потенциалы в водном растворе, сильнощелочной характер оксидов М2О и гидроксидов МОН). [c.114]

    Некоторым атомам обычно приписываются постоянные степени окисления. Например, степень окислеиия фтора в соединениях всегда равна —1, лития, натрия, калия, рубидия, цезия и франция +1, магния, кальция, стронция, бария и цинка +2, алюминия - -3. [c.58]

    Простые вещества (593). S 2. Соединения калня (I), рубидия (I), цезия (I) и франция (I) (594) [c.669]

    Группа I, группа щелочных металлов. Щелочные металлы — литий, натрий, калий, рубидий, цезий и франций — легкие металлы, обладающие очень высокой химической активностью. Многие их соединения находят важное применение в промышленности и повседневной жизни. Щелочные металлы и их соединения рассмотрены в гл. 18. Слово щелочи произошло от арабского слова, означающего зола (соединения этих металлов получали из древесной золы). [c.105]

    В природе щелочные металлы находятся в виде хлоридов, сложных алюмосиликатов, сульфатов и в других соединениях. Наиболее распространенным элементом является натрий. Рубидий и цезий содержатся в минералах калия. Калий и рубидий слабо радиоактивны. Франций — радиоактивный элемент, не имеет долгоживущих изотопов. [c.251]

    Литий, натрий, калий, рубидий, цезий и франций в соединениях проявляют степень окисления - -1. Атомы этих элементов легко отдают единственный электрон внешнего слоя и поэтому являются сильными восстановителями. Их восстановительная способность растет от лития к францию. Из всех простых веществ наиболее сильным восстановителем является франций, так как его атомы больше атомов других элементов подгруппы. Щелочные металлы в водных растворах образуют соединения Э +—О—Н, которые являются сильными хорошо растворимыми основаниями — щелочами. Это обусловлено малой величиной зарядов ионов (1-Ь) и большой величиной их радиусов. [c.95]

    Соединения калия применяются также в производстве стекла, мыла и др. Соединения калия, рубидия, цезия и франция используются в медицине. [c.570]

    Элементы подгруппы калия — калий К, рубидий Rb, цезий s и франций Fr — наиболее типичные металлические элементы — катионо-гены. При этом с повышением порядкового номера этот признак у элементов усиливается. Для них наиболее характерны соединения с преимущественно ионным типом связи. Вследствие незначительного поляризующего действия ионов (малый заряд, устойчивость электронной структуры, большие размеры), комплексообразование с неорганическими лигандами для К, Rb, s нехарактерно, даже кристаллогидраты для них почти неизвестны. [c.534]

    К щелочным металлам относятся литий (1л), натрий (Ка), калий (К), рубидий (КЬ), цезий (Сз) и франций (Рг). Конфигурация внепшего электронного слоя этих элементов - пз1. В своих соединениях они проявляют единственную степень окисления +1. [c.255]

    Как видно из приведенных данных, наиболее распространены в природе натрий и калий, которые встречаются в виде хлоридов, сульфатов, силикатов и некоторых других соединений. Литий, рубидий и цезий входят в состав кристаллических решеток минералов тех элементов, к которым они близки по атомным и ионным радиусам. Рубидий близок по ионному радиусу (0,73 А) к калию (0,59А), и поэтому его соединения накапливаются в минералах, содержащих калий. Литий встречается в минералах вместе с магнием и железом. Франций, не имея стабильных изотопов, находится в ничтожных количествах в радиоактивных рудах актиния и урана. [c.316]


    Атомы всех элементов, находящихся в первой группе, на внешнем энергетическом уровне имеют по одному электрону. Это и определяет их общие свойства. В соединениях эти элементы образуют только положительно заряженные ионы, так как они не обладают способностью ирисоединять электроны, а могут только их отдавать. Следовательно, все эти элементы являют( я типичными металлами. Наряду с одинаковым строением внешнего электронного слоя предпоследний слой у атомов отдельных элементов построен различно у одной группы элементов в нем находится по 8 электронов, у другой — по 18. Такое различие в строении предпоследнего электронного слоя оказывает большое влияние на свойства элементов и лежит в оспове деления их на две подгруппы. К главной подгруппе первой группы периодической систем],i относятся литий, натрий, калии, рубидий, цезий и франций. В предпоследнем слое у них находится по 8 электронов (у лития два). [c.242]

    Химически элементы 4—7-го периодов подгруппы 1А весьма активны. Например, при сгорании на воздухе они, в отличие от натрия и лития, дают супероксиды КО2, КЬОг, СзОг. Лишь косвенным путем можно получить пероксиды, которые менее устойчивы, чем НагОг. Калий, рубидий, цезий, франций — сильные электроположительные элементы, поэтому из соединений вытесняют водород, который забирает у атома щелочного металла один электрон. В воде и спирте это происходит довольно легко  [c.281]

    Создание количественной характеристики ионности химических связей, по нашему мнению,— централыная задача теории сегодняшнего дня, так как именно с помощью полярных (т. е. частично ионных) связей построено подавляющее большинство химических веществ. В самом деле, металлическая связь реализована в нескольких сотнях чистых металлов и интерметаллических соединений чисто ковалентных молекул (типа АА) не может быть больше, чем сортов атомов в периодической системе, а к идеально ионным веществам с известным приближением можно отнести лишь некоторые кристаллические щелочные галогениды —фториды калия, рубидия, цезия и франция. Следовательно, представителей К райних типов химической связи ие больше тысячи, а все остальные миллионы химических соединений содержат частично ионные связи. [c.4]

    На рис. 7.6 указаны химические элементы, для которых выделены в твердую фазу и охарактеризованы сульфоксидные комплексные соединения. Из нее видно, что сульфоксидные соединения известны для большинства элементов. Для неметаллов координационные соединения малохарактерны. Другие белые пятна объясняются не столько сложностью получения координационных сульфоксидных соединений, сколько малой доступностью некоторых элементов и их солей. Это относится и к большинству актинидов, прометию, технецию, полонию, францию. Можно надеяться, что в будущем удастся получить сульфоксидные соединения вольфрама, мышьяка и бериллия. В растворе, безусловно, существуют суль( ксидные сольваты рубидия цезия, стронция и бария. Однако такие соединения пока еще не выделены в твердую фазу. [c.162]

    Кривая теплот образования хлоридов с возрастанием атомного номера катиона имеет столь же отчетливо выраженный периодический характер (рис. 31). Разделению элементов на периоды и здесь отвечают инертные газы, не образуюш ие сколько-нибудь устойчивых хлоридов и соответствую-ш ие поэтому наиболее глубоким минимумам. В 1—3-м периодах максимумы теплот образований хлоридов приходятся на водород, литий и натрий. В 4—6-м периодах выявляются по два главных максимума. Первый приходится на щелочной металл — калий, рубидий, цезий или франций, — что соответствует катионам с внешней электронной конфигурацией р и наибольшим ионным радиусом. Вторые максимумы теплот образования хлоридов приходятся на хлориды цинка, кадмия (с катионами, имеющими внешнюю d °-подоболочку) и одновалентного таллия. Минимумы приходятся на элементы I и VIII групп — медь, рутений и золото — и примерно соответствуют окончанию заполнения d-подоболочки у переходных металлов и началу заполнения следующей 8 р -оболочки. В четвертом периоде высшая валентность у хлоридов металлов V—VI групп не проявляется, минимум отсутствует и соответствующий участок кривой имеет сложную форму. Заполнение /-оболочек у лантаноидов и актиноидов намечается в виде третичной периодичности теплот образования их хлоридов. При этом теплоты образования хлоридов приблизительно линейно убывают от La lg к LuGlg в связи с лантаноидным сжатием катионов. Однако тепло-там образования хлоридов европия и иттербия отвечают явные минимумы, разделяющие семейство лантаноидов на цериевую и иттриевую группы. Для актиноидов, которые в отличие от лантаноидов в соединениях с хлором проявляют высшие валентные состояния, теплоты образования хлоридов [c.108]

    В 1922 г. Франц Фишер и Ганс Тропш получили путем каталитической обработки водяного газа (С0 Н2=1 1) при дйвлении порядка 100 ат и 400° над железным катализатором, пропитанным карбонатами щелочных металлов, продукт, разделявшийся на масляный и водный слои [8]. По мере уменьшения щелочности металла (от лития через натрий и калий к рубидию и цезию) относительное количество маслянистого продукта, т. е. водонерастворимых высокомолекулярных соединений, увеличивалось. [c.72]

    К металлическим элементам можно отнести литий и бериллий в первом малом периоде периодической таблицы, натрий, магвий и алюминий — во втором малом периоде, тринадцать элементов от калия до галлия в первом большом периоде, пятнадцать элементов от рубидия до сурьмы во втором большом периоде, двадцать девять элементов от цезия до висмута в первом очень большом периоде (включая четырнадцать редкоземельных металлов) и шестнадцать элементов от франция до лоуренсия. Таким образом, три четверти общего числа элементов являются металлами многие их соединения имеют важное практическое значение. [c.398]

    С водой взаимодействие происходит с воспламенением и взрывом.. При электролизе водных растворов на катоде выделяется не металл, а водород, так как он имеет больщее сродство к электрону. Современный промышленный метод получения этих металлов — электролиз расплавленных хлоридов. Из-за сильного электроположительного характера металлы с водородом образуют гидриды, где водород ведет себя как электроотрицательный элемент К+И",, КЬ+Н , Сз+Н . В струе хлора металлы подгруппы 1А самовоспламеняются и сгорают, излучая ослепительный свет. Взаихмодействие их с жидким бромом происходит с сильным взрывом. На воздухе они тотчас же окисляются, а рубидий и цезий способны к самовоспламенению. При этом образуются пероксидные соединения различного состава. Во влажной атмосфере металлы быстро тускнеют и покрываются коркой гидроксида, а при нагревании легко взаимодействуют с большинством неметаллов известны их интерметаллические соединения. Рассматриваемые элементы довольно легка теряют электроны при нагревании или освещении. Этим свойством пользуются при создании фотоэлементов и термоэмиттеров. Можно заметить, что все перечисленные свойства элементов подгруппы калия иллюстрировались на примере К, КЬ и Сз, а франций оставался как бы в стороне. Дело в то >л, что франций — радиоактивный элемент и является одним из самых короткоживущих. Сочетание двух качеств самого тяжелого активного металла с низкой ядерной устойчивостью создает большие трудности и препятствия в изучении этого элемента. Поэтому большинство его свойств выявлено экстраполяцией на основе сведений о поведении его аналогов но подгруппе. [c.281]

    Отмечается изменение валентных состояний в седьмом периоде от франция до урана, подобное имеющемуся в шестом периоде от цезия до тантала (обзор сделан для лантанидной аномалии) и для пятого периода от рубидия до молибдена. Но в то время как в двух последних случаях максимальная валентность элементов этих периодов продолжает возрастать до VIII, для нептуния, плутония и америция она не превышает VI. МакМиллан и Абельсон были правы, считая, что с урана начинается новая серия редких земель , которую они назвали уранидами. Если есть основания к привычному разделению редких земель на семейства цериевых и иттриевых элементов, отличающихся между собой по растворимости их соединений и по их гидролитическим свойствам, то ураниды также нужно разбить на две подгруппы собственно ураниды, имеющие поливалентные состояния, и кюриды, в основном трехвалентные (табл. 3). [c.130]

    Детально изучено соосаждение ионов Fr+ с различными осадками. Некоторые из полученных данных приведены в табл. 60. Франций не осаждается с гидроокисями и сульфидами различных металлов, с карбонатом и хроматом бария, двуокисью марганца, теллуром и хлоридом серебра. Наиболее полное соосаждение франция наблюдается с осадками хлороплати-натов цезия и рубидия, хлоро-висмутата (V), хлоростанна-та (IV) и хлороантимоната (V) цезия. Соосаждение франция не зависит от растворимости соединения макрокомпонента. Например, данные табл. 60 свидетельствуют об одинаковой степени соосаждения с КЬг(Р1С1б) и [c.287]

    Франций, рубидий и цезий являются наиболее электроположительными среди других щелочных мзталлов. Они обладают большой реакционной способностью. Хлориды, нптраты, сульфаты, карбонаты, хроматы, оксалаты п фосфаты цезия характеризуются растворимостью в воде. По реакциям осаждения цезпй и рубидий обнаруживают весьма большое сходство с калием. Различная растворимость некоторых солей цезия, рубидия и калия используется для их разделения, но при однократном осаждении добиться их полного разделоння невозможно. К числу сравнительно труднорастворимых соединений этих элемзнтов относятся перхлораты и тетраоксалаты (табл. 3). [c.43]


Смотреть страницы где упоминается термин Рубидий, цезий, франций и их соединения: [c.357]    [c.168]    [c.176]    [c.100]    [c.315]    [c.88]    [c.279]    [c.123]    [c.281]    [c.281]   
Смотреть главы в:

Справочник Химия изд.2 -> Рубидий, цезий, франций и их соединения




ПОИСК





Смотрите так же термины и статьи:

Рубидий

Франций

Франций соединения

Цезий

Цезий цезий

Цезий. Франций



© 2025 chem21.info Реклама на сайте