Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутилены втор ути л и оди

    Расчет состава смеси а-бутилен — р-бутилен. Кривая разгонки (рис. 110) состоит из двух площадок й перехода между ними. Одна площадка отвечает а бутилену, вторая — уЗ-бутилену. Так как переход от одного компонента к другому характеризуется кривой, то необходимо найти точку перегиба, чтобы иметь возможность отнести нижнюю часть этой кривой к первому компоненту, а верхнюю — ко второму. Точку перегиба определяют по методу равных площадей. [c.241]


    ДЕГИДРИРОВАНИЕ БУТИЛЕНОВ (вторая стадия двухстадийного метода получения дивинила) [c.99]

    Дегидрирование н-бутиленов (вторая стадия [c.125]

    Прямой гидратацией н-бутиленов втор-бутиловый спирт не получают, тяк как при этом образуется много полимеров. Сернокислотная гидратация н-бутиленов протекает легче, чем в случае этилена или пропилена. Вследствие более высоких температур кипения С4-углеводородов относительно легко провести гидратацию полностью в жидкой фазе. Обычно для этого пользуются 70—85%-рюй кислотой, поддерживая температуру около 20—35°. Желательно проводить процесс в мягких условиях, чтобы избежать образо- [c.151]

    Примечание. Аналогично получают из этилена этиловый спирт, из бутиленов втор- и трет-бутиловые спирты. [c.203]

    Характерной особенностью фракций и С4, получаемых при каталитическом крекинге, является высокое содержание в них олефиновых углеводородов — пропилена в первой и бутиленов во второй. Во фракции С4, образующейся при крекинге над синтетическим катализатором, концентрация изобутана значительно выше, чем нормального бутана. [c.210]

    Вычитая из величины пика массового числа 56 изотопную поправку и сумму наложений н-пентана, изопентана, амиленов, н-бутана и изобутана, получают значение высоты молекулярного пика бутиленов, которое записывают во вторую вертикальную графу, а затем умножают на коэффициент дпя вычисления участия бутиленов в расчетных пиках других соединений. [c.269]

    Вычитая из величины пика массового числа 42 изотопную поправку и сумму наложений -пентана, изопентана, амиленов, -бутана, изобутана, бутиленов и пропана, получают значение высоты молекулярного пика пропилена, которое записывают во вторую вертикальную графу, а затем умножают на коэффициент для вычисления доли пропилена в расчетных пиках этилена и метана. [c.272]

    Во время второй мировой войны па заводах И. Г. Фарбениндустри процесс дегидрирования бутанов до бутиленов применялся с целью полу- [c.199]

    Теоретическое значение результатов, полученных с фтористым втор-бутилом и бутиленами, уже обсуждалось. [c.335]

    После второй мировой войны в США освободилось много полн-меризационных установок, на которых в годы войны выпускались высокооктановые компоненты авиационных бензинов. Эти установки были использованы для выработки гептенов, которые служат для получения изооктанола. Выпуск этого спирта на основе сополимеров пропилена и бутиленов достиг в 1961 г. 62 тыс. т 155 ]. В процессе сополимеризации пропилена и бутиленов [c.105]


    Широкий спрос существует также на нормальный и изобутан первый применяется в производстве бутадиена и других химических продуктов, второй — для алкилирования олефинов с целью получения компонентов бензина. В силу последних обстоятельств в настоящее время жидкие газы, выпускаемые на рынок, в основном состоят из пропана. В соответствии со спецификацией Национальной американской ассоциации по производству газового бензина [404] не исключается присутствие пропиленов в товарном пропане и бутиленов — в товарном бутане впрочем, эти олефины в нефтепереработке используются в качестве источника получения моторных топлив или химических продуктов. Спецификации включают требования по составу, содержанию воды и сернистых соединений и по упругости паров. [c.450]

    Низкомолекулярные полимеры и сополимеры пропиленов и бутиленов вплоть до С12 используются в качестве компонентов автомобильного бензина. В годы второй мировой войны их подвергали гидрированию, в результате чего получался высококачественный компонент авиационного бензина. Эти полимеры обычно получаются над фосфорнокислотным катализатором. [c.581]

    Выделение бутадиена из смесей углеводородов С4 является одной из крупных промышленны х проблем, решенных с помощью метода экстрактивной ректификации. Имеются два пути получения бутадиена на основе использования метода экстрактивной ректификации. Первый путь заключается в непосредственном выделении бутадиена из газов крекинга, в которых он содержится в количестве около 0,5%. Второй путь основан на выделении бутадиена из смесей, получающихся при последовательном. каталитическом дегидрировании бутана и бутиленов. В промышленности используются крупные установки по получению бутадиена обоими способами [258, 295]. [c.288]

    Были проведены два опыта с продуктами, образовавшимися на первой стадии, где в качестве олефинового сырья использовали смесь изобутана с н-бутиленами. Продукты второй стадии в таком случае по показателям занимали промежуточное положение между продуктами, полученными при иопользовании на первой стадии чистого изо-бутилена или чистых н-бутиленов алкилаты имели октановое число (исследовательский метод) 88,7, 93,0 и 100,8 соответственно для чистого изобутилена, смеси изобутилена с бутеном-2 или для чистого бутена-2. То же относится и к фракции триметилпентанов, полученной из смеси олефинов. [c.108]

    Статья состоит из двух частей. В первой части рассказывается об изучении турбулентных потоков, возникающих при использовании импеллеров с радиальным выбросом струи . Было подтверждено, что перемешивание связано с возникновением потоков в среде, поэтому для понимания сущности перемешивания прежде всего нужно упорядочить характеристики потоков, создаваемых импеллерами. Вторая часть представляет собой сравнение работы двух импеллеров, создающих существенно разные потоки при пилотных исследованиях сернокислотного алкилирования изобутана бутиленами. [c.176]

    После поглощения в первом поглотителе оставшийся газ переводят о второй поглотитель, где происходит поглощение 84%-ной кислотой пропилена, н-бутилена, дивинила и паров вторичных амиленов. При подсчете результатов анализа к полученному объему газа, поглощенного во втором поглотителе, добавляют еще поправку на поглощение в первом поглотителе углеводородов со вторичным атомом углерода. Это и будет суммарное содержание пропилена, н-бутиленов, дивинила и паров вторичных амиленов в анализируемом газе. [c.832]

    Предложен нефтехимический вариант процесса нефтепереработки [14], обеспечивающий максимальные выходы основных продуктов нефтехимического сырья олефинов (47,4—52,2%) и ароматических углеводородов (9,8—10,9%), сырья для производства сажи и игольчатого кокса (смесь пиролизной смолы и тяжелого дистиллята каталитического крекинг-мазута). Строго говоря, этот вариант нельзя отнести к процессам переработки тяжелых нефтяных остатков, это скорее процесс безостаточной комплексной переработки нефти, как бы в обход процессов, ведущих к созданию тяжелых остатков. В основе его лежит несколько модифицированных технологических процессов, широко применяемых в современной нефтеперерабатывающей промышленности. Конечный (хвостовой) продукт процесса прямой перегонки пефти (мазут) становится сырьем для второго процесса — процесса каталитического крекинга. Продукты прямой атмосферной перегонки, выкипающие до 343° С, подвергаются пиролизу для получения олефинов. Прямогонный (60%-ный) мазут подвергается каталитическому крекингу на цеолитном катализаторе с резко выраженной крекирующей (и слабее — дегидрирующей) активностью. Обычно в качестве сырья для каталитического крекинга берут дистиллятные фракции нефти, чтобы избежать интенсивного закоксовывания катализатора, обусловленного наличием в сырье смолисто-асфальтеновых веществ нефти. Здесь не боятся интенсивно протекающего процесса коксования, так как выжиг кокса служит источником энергии для компенсации затрат энергии на осуществление процесса крекинга, а также для производства технологического пара. Кроме того, интенсивно протекающий процесс коксования в сильной степени освобождает сырье от асфальтенов и конституционно связанных с ним атомов металлов (V и N1). Процесс крекинга мазута осуществляется в системе флюид. Он характеризуется высокими выходами пропилена и бутиленов, а также легких и средних дистиллятных фракций, которые после гидроочистки и освобождения от содержащихся в них ароматических углеводородов поступают на пиролиз. Тяжелые дистилляты могут быть использованы как ко- [c.251]


    Согласно этой схеме на первую ступень алкилирования поступает 10 молей изобутана и 1 моль бутиленов, а в результате реакции образуется 1 моль алкилата и остается 9 молей непрореагировавшего изобутана, поэтому для сохранения соотношения изобутан — бутилены, равного 10 1, на вторую ступень подается 0,9 молей бутиленов. [c.630]

    Каталитический крекинг сыграл выдающуюся роль во время второй мировой войны — иа базе бензина каталитического крекинга было налажено массовое производство высокооктанового авиационного топлива. В этот же период часть установок работала на режиме глубокого превращения сырья с целью получения больших выходов газа, богатого бутиленом, который использовался для производства бутадиенового каучука. В качестве сырья применяли керосино-газойлевые фракции. По окончании войны, когда потребность в авиационном бензине упала, а спрос на керосино-газойлевые дизельные фракции возрос, установки каталитического крекинга перевели на режим переработки утяжеленного сырья с целью получения в качестве основного продукта высокооктанового автомобильного бензина. В настоящее время в отечественной и зарубежной [c.16]

    Первая стадия дегидрирования проводится при атмосферном давлении, вторая при парциальном давлении н-бутиленов 9— 13 кПа. Для понижения парциального давления в систему вводится перегретый водяной пар. [c.327]

    На первой стадии н-бутилены извлекаются из бутан-бутиленовой Рис. 15.3. Влияние времени смеси экстрактивной дистилляцией контактирования на выход н-с акрилонитрилом (АН), а на второй бутиленов. Т, > [c.327]

    Установка состоит из двух колонн экс-трастивной реетификации (первая колонна предназначена для отделения бутадиена от бутана и бутиленов, вторая - для очиспси бутадиена от ацетиленовых углеводородов Сц) и двух колонн окончательной ректификации бутадиена фис. 6). [c.19]

    Бензол, н-бутилен втор-Бутилбензол ВРз Н3РО4 50° С, бензол н-бутилен= = 2 1. Выход 85-88,7%. ВРз Н3РО4 (88,7%)— ВРз НаО (11,3%) условия и выход те же. ВРз НаО условия и выход те же [147] [c.132]

    П р л м е ч а н и с. Аналогично получают пз этилена этилоеый спирт, из бутиленов втор- и /прет-бутиловые спирты. [c.203]

    Для выделения бутадиена из бутадиенсодернга-щих фракций в промышленности используются в основном два метода экстрактивная ректификация и хемосорбция аммиачным раствором ацетата меди (I). Процесс с использованием метода хемосорбции является устаревшим и на новых установках сейчас не применяется. Наибольшее промышленное применение для выделения бутадиена, пригодного для стереоспецифической полимеризации, в настоящее время получила двухступенчатая экстрактивная ректификация с диметилформамидом и ацетонитрилом. Установка состоит из двух колонн экстрактивной ректификации (первая колонна предназначена для отделения бутадиена от бутана и бутиленов, вторая — для очистки бутадиена от ацетиленовых углеводородов 04) и двух колонн окончательной ректификации бутадиена. [c.13]

    На принципе частичного испарения сырья (изобутана) также осповап отвод тепла реакции в показанном на рис. 145 реакторе для алкилирования изобутана бутиленом. Этот реактор представляет собой последовательно секциони-рованн])1Й аппарат со ступенчат1.1м подводом сырья. Циркулирующий изобутан и серная кислота подаются в первую секцию и проходят последовательно вторую н третью секции, а исходное сырье разбивается па три потока, каждый из которых подается в одну из секций. В каждой секции установлен пропеллерный смеситель. Темиература регулируется испарением части изобутапа. [c.280]

    Производство бутадиена и стирола каталитической дегидрогенизацией приобрело промышленное значение. Несмотря на то, что это производство зависит от общего спроса на каучук и от поставок природного каучука, весьма сомнительно, чтобы возможные колебания рыночных цен могли вызвать полную остановку этой промышленности. После второй мировой войны производство синтетического каучука уменьшилось с 760 ООО до 275 ООО т в год, производство бутадиена из спирта прекратилось полностью, а дегидрирование бутена несколько сократилось. Низкий индекс производства дерн ался в январе 1950 г., когда природный каучук продавался но цене 18,3 цента за фунт. Когда цена его в ноябре 1950 г. возросла до 73 центов за фунт, то снова увеличилось производство синтетического каучука, достигнув 530 000 m в 1951 г. [65]. Производительность действующих и строящихся заводов но получеп1тю бутадиена из нефтяного сырья составляла в 1953 г. 637 000 т, в то время, как производительность заводов по получению бутадиена из спирта составляла всего 215 000 тп [81]. Можно предположить, что каталитическое дегидрирование бутиленов и этилбензола будет сохранять свое значеппе до тех пор, пока не будут созданы еще более совершенные методы производства бутадиена и стирола. [c.210]

    Аналогичные результаты получены и в другой работе [15], в которой вначале получался фтористый бутил путем обработки бутилена фтористым водородом при 20°, затем он подвергался контактированию с изобутаном в присутствии фтористого водорода при 10° при времени контакта 5 мин. Получался продукт, практически идентичный таковому, образовавшемуся в реакции с бутеном-2 без предварительного превращения его во фтористый втор-бутшл.. Более того, алкилат, полученный в реакции с предварительной обработкой бутена-1, был практически идентичен алкилату, полученному в реакции с бутеном-2. С другой стороны, алкилат, полученный из бутена-1 без предварительной обработки, заметно отличался по составу октановой фракции, которая содержала 33% 2,3- и 11% 2,4-диметилгексанов и 46 % 2,2,4-триметилпентанов, в то время как октановая фракция, полученная в опытах с бутеном-2 или с бутиленами, предварительно обработанными, состояла из 7—8% 2,4-диметилгексана и 92—93 % триметилпентанов и совсем не содержала 2,3-диметилгексана. [c.335]

    Кроме леречисленных веществ, в смеси имеются также небольшие количества соединений с температурами кипения ииже и выше, чем температуры кипения углеводородов С4. Эта смесь подается в ректификационную систему 1, состоящую из двух последовательных колонн, имеющих каждая по 50 тареЛок, В этой системе производится выделение бутилвна-1 путем четкой ректификации. Вместе с бутиленом 1 в виде азеотропа с н-бутаном отгоняется бутадиен. В дистиллате содержатся также в небольших количествах углеводороды Сз и наиболее легкие углеводороды С4—изобутан и изобутилен. Этот дистиллат подается в колонну 2 для отгонки углеводородов Сз. Полученная в этой колонне в виде кубовой жидкости смесь направляется в систему выделения бутадиена, в которой бутнлен-1 отгоняется в смеси бутиленов, направляемой на вторую стадню дегидрирования. [c.291]

    Вторая стадия процесса заключается в выделении и очистке бутадиена, а также регенерации непревращенных н-бутиленон с целью возвращения их в стадию дегидрирования. Принципиальная схема второй стадии процесса изображена на рис. 101. Получающаяся при дегидрировании н-бутиленов смесь углеводородов компримируется и из нее удаляются водород и низкокипящие примеси аналогично тому, как это делается в первой стадии процесса. Затем в колонне / с 40 тарелками производится отгонка углеводородов Сз от С4. При этом углеводороды С4 освобождаются также от основной доли метилацетилена. Хотя температура кипения последнего значительно выше, чем пропана, эти два вещества образуют положительный азеотроп, содержащий при давлении 22,6 ата 16 мол.% метилацетилена. Это благоприятствует отгонке последнего. Кубовая жидкость колонны 1 отбирается в промежуточную емкость, из которой поступает в колонну 2, представляющую собой комбинацию двух последовательно соединенных колонн, имеющих по 50 тарелок каждая. В колонне 2 в качестве дистиллата отбирается бутадиен, бутилен-1, часть бутилена-2 н н-бутана, а также более летучие углеводороды, а в качестве кубовой жидкости — бутилены-2, часть н-бутана, ацетилены и высококипящие примеси. Назначение этой операции заключается в предварительном концентрировании бутадиена с целью уменьшения количества смеси, подаваемой в колонну для экстрактивной ректификации, проводимой с водным фурфуролом как разделяющим агентом. [c.292]

    В связи с тенденцией использования бутиленов для производства метил-т/уе/п-бутилового эфира, алкилата или втор-бут-лового сппрта возрастает роль процессов получения высокооктановых компоненюв бензина из ППФ. [c.174]

    Как г идно из рис. 146, при повышении температуры равновесная концентра- g ция к-бутана резко падает, содержание н-бутиленов проходит через макси- д д мум, а количество бутадиена растет, температура,к но не столь значительно, ввиду одновременного образования водорода на обеих стадиях. Эти данные показывают, что для одностадийного процесса следует выбирать более высокую температуру, чем на первой стадии дегидрирования парафинов, и пониженное парциальное давление реагентов. Кроме того, требуется катализатор, который соответствующим образом ускорял бы обе реакции дегидрирования (например, алюмо-хро-мовыи). Поскольку при работе с этим катализатором нельзя использовать водяной пар в качестве разбавителя, был разработан процесс, идущий при пониженном давлении (0,015—0,02 МПа) и температуре 580—600°С (средняя между оптимальными для первой и второй стадии дегидрирования парафинов). Из-за применения вакуума реакторы с движущимся катализатором оказались не-пригсдными для одностадийного процесса. Сильное отложение кокса н необходимость частой регенерации контакта обусловили испо/ьзование регенеративной системы Гудри. [c.495]

    Экстрактивная перегоика — второй метод разде [ения близкокипящих компонентов. При этом смесь перегоняют с третьим, малолетучим компонентом, присутствие которого увеличивает разницу в летучести разделяемых компонентов. Так, смесь толуола и метилциклогексана имеет относительную летучесть а = = 1,25 при наличии 50% (масс.) фенола в жидкой фазе а повышается до 1,75. В отличие от разделяющего компонента азеотропной перегонки, летучесть которого относительно велика и который уходит в виде дистиллята, разделяющий компонент экстрактивной перегонки обладает невысокой летучестью и уходит с остатком перегонки, что может оказаться экономичным, если концентрация компонента, уходящего в виде остатка, невелика. Экстрактивная перегонка, подобно азеотропной, применяется для выделения ароматических углеводородов, а также для разделения бутан-бу-тиленовых и бутилен-бутадиеновых смесей, получаемых в процессе дегидрирования к-бутана. В качестве экстрагентов применяют фурфурол, N-мeтилпиppoлидoн и др. [c.50]

    Динамику выделения летучих веществ из нефтяных коксоз изучали в работе [23]. Скорость выделения летучих характеризуется сложной зависимостью от температуры — наблюдается ряд максимумов скоростей. Первый максимум — при 100—200 °С — обусловлен испарением влаги, которая нонадает в кокс второй — испарением и дококсовыванием адсорбированных продуктов при 470—520 °С. Испарение смол, видимо, сопровождается нх деструкцией, так как газы прокаливания кроме Нг и СН4 содержат непредельные углеводороды этилен, пропилен и следы бутиленов. [c.196]


Смотреть страницы где упоминается термин Бутилены втор ути л и оди: [c.135]    [c.59]    [c.67]    [c.325]    [c.73]    [c.357]    [c.292]    [c.97]    [c.125]    [c.624]    [c.332]   
Органическая химия (1974) -- [ c.182 , c.443 , c.678 ]




ПОИСК





Смотрите так же термины и статьи:

Бутилен



© 2025 chem21.info Реклама на сайте