Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлоорганические свободные радикалы

    Разрывы связей между атомом углерода и гетероатомом часто используются для получения свободных органических радикалов. Эти разрывы осуществляются чаще всего с помощью металлов, способных к отдаче одного из неспаренных электронов с внешней электронной оболочки. Принято считать также, что галоидные производные превращаются в металлоорганические соединения с промежуточным образованием свободного радикала со свободной валентностью у атома углерода (а). [c.375]


    Образование связей С— Ме взаимодействием галогеноалкилов с металлами — одной из основных реакций металлоорганических соединений — протекает через стадию анион-радикалов. Реакция начинается с переноса электрона с поверхности решетки металла на адсорбированную молекулу галогенопроизводного с образованием анион-радикала (легко идентифицируемого методом электронного парамагнитного резонанса). После разрыва связи С—Гал образуется свободный радикал и анион галогена, которые закрепляются на поверхности металла. Далее радикал принимает с металла второй электрон, превращаясь в карбанион одновременно катион металла переходит в раствор, образуя металлоорганическое соединение. [c.324]

    Теплоты диссоциации молекулярных соединений рассматриваются в гл. 6, первой из четырех глав, в которых идет речь о величинах теплот диссоциации, полученных на основании калориметрических данных. Глава 7 посвящена теплотам диссоциации органических молекул (одним из продуктов диссоциации таких молекул является свободный радикал), а также способам использования получаемых значений теплот образования радикалов для вычисления других энергий диссоциации по калориметрическим данным. В гл. 8 ранее вычисленные теплоты образования алкил- и арил-радикалов используются в свою очередь для вычисления энергий диссоциации связей металл — углерод в металлоорганических соединениях. Наконец, в гл. 9 дается обзор энергий диссоциации органических кислот и оснований в водных растворах. [c.26]

    Свободные радикалы представляют собой реакционноспособные молекулы (или атомы), имеющие неспаренные электроны. Этот термин не применяется к стабильным частицам типа Ре + или О2, хотя парамагнитные свойства этих частиц (разд. 16.1) указывают на то, что они обладают неспаренными электронами. При очень высоких температурах органические молекулы могут частично диссоциировать на свободные радикалы, а гексафенилэтан частично диссоциирует на два трифенил-метильных радикала уже при комнатной температуре, как было показано Ромбергом в 1900 г. Измеряя понижение температуры замерзания растворителя, он обнаружил диссоциацию растворенного вещества на более мелкие частицы, хотя растворы не были электропроводными. Свободные алкильные радикалы в газовой фазе можно получить термическим разложением металлоорганических соединений. Например, метиль-ный радикал СН3 образуется по реакции [c.309]


    Сложные лиганды, например, анионы р-дикарбонильных соединений в составе металлоорганических соединений, могут распадаться по Бг-тину, как и свободное соединение, но с некоторыми особенностями. Так, в хелатах отщепляются последовательно два радикала, чего не происходит у соединений, не имеющих металла  [c.53]

    Учитывая сказанное об определяюш ей роли состояния аллиль-ного радикала в процессе формирования микроструктур, не исключена возможность, что некоторые специфические соединения, способные эффективно комплексоваться с аллильными свободными радикалами, могут оказать влияние на стереоспецифичность действия систем при сохранении радикального механизма роста цепи. В тех случаях, когда взаимодействие аллильных радикалов протекает с металлами или их солями, может реализоваться второй путь — переход от радикального инициирования к координационно-ионному. Подобный механизм становится наиболее очевидным в тех случаях, когда реакция сопровождается образованием металлоорганических соединений, например, [c.74]

    IF3 образует при нагревании и облучении УФ-светом свободный радикал F3 и поэтому очень подходит для синтезов различных соединений типа СРа(Ср2)я-Х, металлоорганических соединений, а также органических производных неметаллов. [c.248]

    Металлы—цинк, железо, медь, олово, свинец—атакуются при разложении фенилдиазоцетата даже в присутствии избытка щелочи, что ни в коем случае не может быть объяснено действием уксусной кислоты в присутствии кислорода воздуха, а только действием свободного радикала СНдСОО-. Решающим доказательством наличия при данном распаде свободных радикалов является образование металлоорганических соединений. [c.269]

    Другие металлоорганические соединения. В 1849 г. Франкланд, стараясь получить свободный радикал этил из иодистого этила путем отщепления иода, нагревал иодистый этил с цинком в запаянной трубке при 150—160°С. Продуктом реакции была жидкость, которая воспламенялась при соприкосновении с воздухом и энергично реагировала с водой с выделением газа. Этот газ оказался не этилом, а этаном, а жидкость — диэтилцинком, образующимся в результате следующих реакций  [c.402]

    Автор упускает существенную деталь работ Пакета. Одно лишь возникновение свинцового зеркала не может служить доказательством образования (и кратковременного существования) свободного радикала, В ходе работ было установлено, что свободные радикалы способны образовывать с металлами, нанесенными на стенки трубки (РЬ, 2п, 8Ь и др), летучие металлоорганические соединения. Исчезновение зеркала и образование металлоорганическнх соединений является доказательством существования свободного радикала и основой расчета полупериода его существования.— Прим. перев. [c.503]

    В. Хофедиц впервые описали опыты по пиролизу металлалкилов. Свободный радикал метил был открыт ими при нагревании гетраметилсвинца в проточной системе при давлении в несколько десятых миллиметра рт. ст. В условиях э-ксперимента время жизни метильного радикала составило около 0,006 с. Впоследствии было показано, что метильный и другие алкильные радикалы могут реагировать с некоторыми металлами с образованием металлоорганических соединений. Для протекания этой реакции необходимо соблюдение ряда условий во-первых, давление газа-носителя должно быть очень низким, чтобы алкильный радикал мог диффундировать к поверхности металла во-вторых, поверхность металла должна быть очень чистой в-третьих, металл необходимо использовать в виде тончайшего зеркала, поскольку из массивного образца алкильные радикалы не в состоянии вырывать атомы металла. [c.9]

    Первый представитель металлоорганических соединений был получен в 1839 г., когда Р. Бунзен выделил радикал какодил (СНз) гАз-Аз (СНз) 2. Открытие Р. Бунзена побудило других химиков исследовать действие различных металлов (2п, Na, Нд и др.) на галогеналкилы ВХ в надежде изолировать соответствующие свободные радикалы. В 1849 г. Э. Франкланд получил при взаимодействии цинка с СгНб цинкэтил 2п(С2Н5)2. [c.255]

    Металлоорганические соединения, которые обычно реагируют подобно полярным соединениям, могут давать свободные радикалы, когда под влиянием физического или химического воздействия происхо]щт отщепление одного электрона, Магнийорганические соединения ведут себя подобным образом при электролизе (в) или в присутствии металлических солей — акцепторов электронов o l2,Fe lз,AgBг. Так, после добавления следов хлористого кобальта конденсация с галоидными алкилами протекает, по-видимому, по радикальному механизму (г). Опытные данные позволяют считать, что при этом сначала происходит двойное разложение, приводящее к образованию нестойкого кобальторганического соединения. Спонтанное разложение последнего дает радикал К-и хлорид кобальта низшей валентности. Имеющийся в молекуле этой соли неспаренный электрон затрачивается на образование второго радикала К - из галоид алкил а. Действительно, среди продуктов реакции обнаружены продукты конденсации радикалов Н и Н . [c.376]


    В качестве широко применяемого источника свободных радикалов укажем еще термический распад азосоединений и металлоорганических соединений. Так, например, радикалы СНз получаются при распаде азометана НзСМгСНз или днметил-ртути Н (СНз)2- Метиленовый радикал СНг получается нри термическом распаде диазометана НгСЫг. [c.99]

    Поскольку при применявшихся давлениях частота столкновений между частицами имеет порядок 10 в сек., можно сделать вывод, что при столкновении с молекулами водорода или азота свободный метил не выводится немедленно из строя. Более поздние эксперименты показали, что носителями активных алкильных радикалов могут служить также многие другие газы, например, аргон, гелий, углекислота и даже пары воды I M. стр. 102). Но средняя продолжительность жизни метильног ) радикала должна в некоторой степени зав исеть от диаметр. реакционного сосуда, температуры и природы газа-носителя -. Можно сделать вывод, что в условиях опытов, первоначально проведенных Панетом, большинство процессов вывода метильных радикалов из строя было вызвано их рекомбинацией в этан на стенках сосуда. Удалось подсчитать, что в холодных стеклянных или кварцевых трубках метильные радикалы претерпевают в среднем 1000 столкновений со стенками трубки до того, как произойдет рекомбинация. При 500° С, с использованием гелия в качестве носителя, активность теряется только примерно прп одном из 10 000 столкновений со стенкой. Каждое столкновение метильного радикала с поверхностью свинца или сурьмы нри-1ЮДИТ, повидимому, к химическому соединению. В отличие от атомарного водорода (стр. 95) метильные радикалы не рекомбинируются каталитически на поверхностях платины, желез ,, меди или никеля, поскольку проволочки из этих металлов, по мощенные в струе газа около источника свободных радикалов, не нагреваются. Быстрые реакции происходят, однако, с щелочными металлами — литием, натрием и калием, а также с 1сталличсскими таллием, оловом, мышьяком и висмутом, для которых хорошо известны стабильные металлоорганические [c.142]

    Особенностью такой полимеризации является то, что инициирование происходит за счет процесса переноса электрона и что в отсутствие обрывающих цепь примесей в растворителях с низкой протонодонорностью рост молекулярной цепи может продолжаться до полного исчерпывания мономера Инициирование состоит в присоединении к мономеру активных частиц (свободных радикалов, отрицательных или положительных ионов). Если после этого мономер получает добавочный электрон, то он переходит в ион-радикал. Последний может димери-зоваться, образуя ди-ион инициировать полимеризацию с одного или с обоих концов, образуя растущую цепь на одном конце по радикальному, а на другом по анионному механизму переходить в тетрамеры. Полимерные радикалы содержат реакционноспособные концы, которые могут продолжать инициирование, поэтому они и называются живыми полимерами В таких системах молекулярный вес возрастает во времени, и можно получить очень высокомолекулярные металлоорганические соединения со щелочным металлом в виде концевой группы, причем они оказываются сравнительно монодисперсными [c.127]

    Синтез ртутноорганических (и вообще металлоорганических) соединений диазометодом, как при разложении двойных диазониевых солей с галогенидами ртути действием постороннего восстановителя, так и в других вариантах диазометода (см. ниже), по-видимому, осуществляется гомолитическим механизмом. Свободный металл (металл-восстановитель в случае разложения двойных диазониевых солей) действует как восстановительна катион диазония, переводя его в диазо юрму, распадающуюся затем гомолитически с образованием радикала арила, который и арилирует металл  [c.182]


Смотреть страницы где упоминается термин Металлоорганические свободные радикалы: [c.426]    [c.125]    [c.348]    [c.375]    [c.375]   
Смотреть главы в:

Химия свободных радикалов -> Металлоорганические свободные радикалы




ПОИСК





Смотрите так же термины и статьи:

Свободные радикалы

Свободные радикалы ион-радикалы



© 2025 chem21.info Реклама на сайте