Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бор и металлы подгруппы алюминия

    Характеристика элементов подгруппы галлия. Подобно типическим элементам, металлы подгруппы галлия являются 5/7-элементами. Несмотря на то что элементы подгруппы галлия — типовые аналоги, наблюдаются особенности в свойствах отдельных ее представителей. Элемент галлий непосредственно следует за первой десяткой кайносимметричных переходных 3 -металлов, для которых особенно сильна -контракция. Поэтому атомный радиус галлия меньше таковых не только его более тяжелых аналогов, но и алюминия. Вследствие этого ионизационные потенциалы галлия более высокие и связанные с ними энергетические характеристики отличаются от его аналогов. Уже у элементов ИВ-группы заметна тенденция к уменьшению степени окисления сверху вниз, в частности для ртути. Такое понижение положительной степени окисления еще более заметно и подгруппе галлия, В этом в определенной мере проявляется горизонтальная аналогия. Уже для таллия степень окисления +1 более стабильна, чем характеристическая степень окисления +3. Вследствие с1- и особенно /-контракции переход от индия к таллию сопровождается только незначительным увеличением атомного радиуса. В то же время ионизационные потенциалы таллия заметно больше, чем индия. Дело в том, что оба бз -электрона атома таллия подвержены сильному эффекту проникновения через двойной экран и /-электронных облаков. В результате 5-электроны с трудом участвуют в образовании химических связей. Этот факт получил наименование концепции инертной электронной пары. Поэтому у таллия часто валентным является бр-электрон, который, переходя к окислителю, превращает таллий в устойчивый ион Т1(+1). По этой причине производные Т1(+1) почти не проявляют восстановительных свойств и, наоборот, производные Т1(+3) являются сильными окислителями. [c.156]


    БОР И МЕТАЛЛЫ ПОДГРУППЫ АЛЮМИНИЯ [c.433]

    Электролиз с ртутным катодом. Особенно удобным и важным методом разделения металлов является метод электроосаждения на ртутном катоде [14]. Поскольку перенапряжение водорода на ртути очень велико (более 1 в), то любой металл, потенциал осаждения которого меньше этой величины, может быть выделен на ртутном катоде, а металл, требующий более отрицательного потенциала, останется в растворе. Так, на ртутном катоде не будут осаждаться алюминий, металлы подгрупп скандия, титана и ванадия, вольфрам и уран. Щелочные и щелочноземельные металлы можно осадить только из основного раствора. Этот метод с большим успехом применяют для удаления железа и по- [c.189]

    Найдены потенциалы полуволн комплексов металлов подгруппы алюминия с ПАР и ПАН-2 (25° = 0,06 pH 1,40) [463]  [c.38]

    ФС Бор в определенной мере отличается от остальных элементов подгруппы (высокие /пл, <кип, относительная инертность), поэтому часто его рассматривают обособленно. Металлы подгруппы алюминия, за исключением самого А1, т. е. Са, 1п, Т1 — легкоплавкие металлы 1п и Т1 чрезвычайно мягкие. [c.46]

    Металлы подгруппы алюминия (А1, Оа, 1п, Т1) химически весьма активны (реагируют с кислотами, щелочами,.галогенам ). [c.46]

    Применение в энергетике. Бор (изотоп 5°В) интенсивно поглощает медленные нейтроны, поэтому используется для изготовления регулирующих стержней атомных реакторов и защитных устройств от нейтронного облучения. Кристаллический бор обладает полупроводниковыми свойствами и используется в полупроводниковой технике (его проводимость при нагревании до 600 С возрастает в 10 раз). Исключительной химической стойкостью, твердостью, жаростойкостью обладают многие соединения бора с металлами побочных подгрупп. Алюминий и его сплавы применяют в энергетике в качестве конструкционного и электротехнического материала. Галлий применяют в полупроводниковой технике, так как его соединения с мышьяком, сурьмой, висмутом, а также аналогичные соединения индия обладают полупроводниковыми свойствами. Галлий используют при изготовлении высокотемпературных термометров с кварцевыми капиллярами (измерение температуры до 1500° С). Галлий может быть использован как хороший теплоноситель в системах охлаждения ядерных реакторов, лазерных устройств. Индий обладает повышенной отражательной способностью и используется для изготовления рефлекторов и прожекторов. Способность таллия при температуре ниже 73 К становиться сверхпроводником делает его перспективным материалом в энергетике. Представляют практический интерес многие соединения этих металлов и соединения бора, например нитрид бора ВЫ—боразон, отличающийся исключительной твердостью и химической инертностью. [c.230]


    Здесь стоит остановиться на алюминии, так как он (кроме неметалла бора) единственный доступный нам среди 19 металлов этой группы. Особенность третьей группы заключается в наличии 15 редкоземельных металлов, которые помещаются в одной клетке периодической системы. Так как они обладают очень близкими свойствами, их определение представляет для аналитиков серьезную трудность. Металлы подгруппы алюминия в своих соединениях чаще всего трехвалентны, химически они довольно активны, но защищены оксидной пленкой от воздействия кислорода или других агрессивных сред. [c.86]

    Из всех металлов подгруппы алюминий — самый распространенный элемент, а галлий, индий и таллий относятся к рассеянным металлам. [c.193]

    Электрические свойства простых веществ, как известно, являются одним из признаков, по которым их делят на металлы и неметаллы. С электрической проводимостью тесно связана теплопроводность кристаллов, обусловленная передачей теплоты за счет колебаний атомов в узлах кристаллической решетки (фоно-ны) и передачей теплоты электронами. В кристаллах неметаллов концентрация свободных электронов незначительна. Поэтому все они являются полупроводниками и диэлектриками и обладают низкой теплопроводностью, обусловленной колебаниями решетки. В противоположность этому для металлов характерны высокие значения электрической проводимости (порядка 10 — 10 Ом -см ) и теплопроводности, поскольку в этом случае вклад свободных электронов в теплопроводность является определяющим. Наиболее высокой электрической проводимостью и теплопроводностью обладают металлы подгруппы меди и алюминий. Для переходных металлов характерны достаточно высокие, но несколько меньшие значения электрической проводимости. [c.249]

    Наиболее явные отклонения от этих простых правил обнаруживаются у щелочноземельных элементов (Са, Sr и Ва) и у трех членов семейства алюминия (S , Y, La). Однако для последних трех элементов внимательное рассмотрение энергий промотирования в состояния, пригодные для образования связей, позволяет устранить расхождения с корреляцией Энгеля. В табл. 8.10 приведены энергии возбуждения в такие состояния с тремя связывающими электронами для металлов подгруппы алюминия. [c.285]

    Энергия промотирования (ккал) из основного состояния для металлов подгруппы алюминия [c.286]

    Гидриды бериллия, алюминия, олова, свинца, металлов подгрупп галлия и цинка имеют ковалентные химические связи. Они термически малоустойчивы. Легко реагируют с окислителями. [c.256]

    Даже фторид серебра AgP характеризуется значительно меньшим значением энтальпии образования (—205,8 кДж/моль) по сравнению с дифторидом серебра (—359,4 кДж/моль). Из металлов IA-группы наибольшим сродством к фтору обладает литий, а для натрия и металлов подгруппы калия значения энергии Гиббса образования фторидов практически одинаковы, что наблюдается и для s-металлов П группы периодической системы. Из 5/7-металлов наиболее прочный фторид образует алюминий. В подгруппах sp-металлов сверху вниз стабильность фторидов несколько уменьшается. Подобно алюминию металлы подгруппы скандия и лантаноиды образуют с фтором устойчивые характеристические трифториды  [c.355]

    Металлические свойства элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Так, элемент бор, который в периоде расположен между бериллием и углеродом, относится к элементам-неметаллам. Он имеет наибольшую энергию ионизации атома (см. п. 3 табл. 13.3). Внутри подгруппы с возрастанием заряда ядра энергия ионизации атомов уменьшается и металлические свойства элементов усиливаются. Алюминий — уже металл, но не типичный. Его гидроксид обладает амфотерными свойствами. У таллия более сильно выражены металлические свойства, а в степени окисления + 1 он близок к элементам-металлам подгруппы лития. [c.248]

    Взаимодействие с металлами. Все металлы по характеру взаимодействия с галлием могут быть разбиты [711 на три группы. Одну из них составляют соседи галлия по периодической системе это металлы подгруппы цинка, главных подгрупп П1 и IV групп, а также висмут. Все указанные металлы соединений с галлием не образуют. Соответствующие двойные системы либо имеют эвтектический характер, либо (в случае тяжелых металлов — кадмия, ртути, таллия, висмута и свинца) наблюдается ограниченная взаимная растворимость в жидком состоянии. Примером последних систем может служить система галлий — ртуть (рис. 49). Ни с одним из металлов галлий не образует непрерывных твердых растворов, что объясняется, очевидно, весьма своеобразной кристаллической структурой металлического галлия. По той же причине весьма незначительны области твердых растворов на основе галлия (наибольшей растворимостью в галлии — 0,85 ат. % — обладает цинк). В то же время галлий образует широкие области твердых растворов на основе других металлов. В рассматриваемой группе наибольшая растворимость галлия наблюдается в алюминии и индии. [c.242]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]


    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]

    Металлохимия лития. По металлохимическим свойствам литий также отличен от других элементов 1А-группы. Объясняется это аномально малой плотностью, резким увеличением температуры плавления в направлении от натрия к литию, а также размерными факторами. Так, литий при сплавлении со своими групповыми аналогами (1А-группа) дает расслоение. В противоположность другим металлам 1А-группы литий не образует металлидов с металлами подгруппы меди. Литий с алюминием образует интерметаллические соединения, тогда как остальные металлы Ь -группы не смешиваются с алюминием в расплавленном состоянии. В то же время все металлы 1А-группы, включая литий, хорошо образуют амальгамы. Кроме того, однотипный характер имеет взаимодействие металлов 1 А-группы с Ga, In, Pb и Sn. [c.306]

    И энтальпия, и энергия Гиббса образования алюминия резко отличаются от таковых для галлия и его аналогов. Только металлы подгруппы скандия и лантаноиды имеют еще большие значения указанных характеристик, чем алюминий. [c.332]

    Из металлов IА-группы наибольшим сродством к фтору обладает литий, а для натрия и металлов подгруппы калия значения энергии Гиббса образования фторидов практически одинаковы. Подобное наблюдается и для -металлов П группы Периодической системы. Из р-металлов наиболее прочный фторид образует алюминий. В подгруппах р-металлов сверху вниз стабильность фторидов несколько уменьшается. Еще более устойчивые характеристические трифториды образуют металлы подгруппы скандия и лантаноиды (см. табл. 25). [c.461]

    Магнитные свойства простых веществ также обнаруживают периодическую зависимость от порядкового номера элемента (рис. 126), но закономерности, которым подчиняется эта зависимость, требуют пояснения. В стандартных условиях простые вещества находятся в разном агрегатном состоянии. Все газообразные и жидкие простые вещества являются диамагнитными. Единственным исключением является кислород, парамагнетизм двухатомной молекулы которого объясняется с позиций метода МО. Сложнее обстоит дело с кристаллическими веществами. Магиитные свойства крист аллов определяются главным образом тремя вкладами диамагнетизмом атомного остова, орбитальным диамагнетизмом валентных электронов и спиновым парамагнетизмом. У неметаллов, в кристаллах которых доминирует ковгшентная связь, вклад спинового парамагнетизма пренебрежимо мал, поэтому все они диамагнитны. Парамагнитными свойствами обладают все переходные металлы с недостроенными и /оболочками, щелочные, щелочно-земельные металлы и магний, а также алюминий. -Металлы с заполненными внутренними оболочками (подгруппы меди и цинка) диамагнитны, так как у них спиновый парамагнетизм не перекрывает двух диамагнитных составляющих (орбитального диамагнетизма валентных электронов и диамагнетизма атомного остова). По той же причине диамагнитными свойствами обладают металлы подгруппы галлия, олово и свинец. [c.248]

    Вхождение алюминия и бора в диагональные пары — еще одно обстоятельство, оправдывающее рассмотрение в данной главе свойств только этих двух элементов подгруппы алюминия, как типичного представителя р-металлов, и р-неметалла бора, проявляющего аномальные свойства по сравнению со всеми другими элементами подгруппы. [c.224]

    Соединения с металлами (германиды). Германий образует широкие области твердых растворов на основе железа и других переходных металлов IV периода — Т1, Мп, Со, Си, а также Ag и А1. Со своими аналогами — Зп и РЬ, а также с 2п, Сс1, Hg, Ag, Аи, В1, Ве и металлами подгруппы алюминия германий дает системы эвтектического типа. Со всеми прочими мгталлами германий образует соединения, причем в большинстве систем их несколько. [c.170]

    Начиная с III группы периодической системы, выделяются металлы подгрупп алюминия и скандия (в том числе лантаноиды и актиноиды), которые дают при осаждении сульфид-ионами гидроокиси Ме(ОН)а—бериллий, европий, иттербий Ме(ОН)з—алюминий, титан (III), хром (III), скандий, иттрий, лантан Ме(0Н)4— титан, цирконий, гафний, церий, торий, уран [МеОгЮН-ниобий, тантал. [c.187]

    Металлохимия. Металлы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболее характерно образование металлидов с S- и s/5-металлами, а также с элементами с полностью заполпеиными (л—1)(з -орбиталямп (металлы подгрупп. меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют пи твердых растворов, ни металлидов. В то же время литий и натрий дают металлиды с галлием и индием. С переходными металлами с дефектной (п—1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. Устойчивость Ti, V, Сг, Fe, Nb, Та, Zr к действию расплавленных щелочных металлов позволяет использовать последние в качестве теплоносителей в авиационных двигателях и в первичном контуре атомных реакторов. [c.118]

    Природные соединения и получение. В противовес алюминию металлы подгруппы галлия относятся к малораспространенным и рассеянным элементам. Практически существует один минерал галлия — галлит СиОаВг, редко встречающийся (Южная Америка). [c.156]

    Относительный рост объема металла AVIV в при плавлении для всех трех металлов близок. Энтропии плавления и испарения, электропроводность а и отношения различаются мало (табл. 21). Любопытно, что они и ДУ/Утв имеют в точности ту же величину, что и у алюминия (см. табл. 23). Структура алюминия такая же, как у металлов подгруппы меди, концентрация почти свободных электронов значительно выше. По расчетам Т. Фабера [7], отношение длины свободного пробега электронов в жидкой фазе к среднему межатомному расстоянию у алюминия равно 6, у меди 13, серебра 18 и золота 10. Пары металлов подгруппы меди, подобно парам алюминия, в основном одноатомны, но, содержат небольшие (порядка 1%) примеси двухатомных и, возможно полимерных молекул. Энергии диссоциации равны (в кДж/моль) 201 для Сиг, 173,5 для Ag2 и 216 для Апг. [c.195]

    Исследовано 22 жидких металла. У 16 металлов вблизи точки плавления г находится в интервале от 8 до 9 (металлы подгруппы лития, алюминий, галлий, индий, таллий, железо, кадмий, ртуть, висмут, сурьма, германий, олово). Надо полагать, что в этих простых жидкостях относительно широко распространены фрагменты ОЦК структуры, В пяти случаях (медь, серебро, золото, свинец, цинк) 2 = 11, В этих жидких металлах, видимо, преобладают фрагменты плотноупакованных структур. Если твердая фаза имеет ОЦК структуру, то после плавления координационное число, как правило, сохраняется близким к 8 и нередко остается почти без изменений в больиюм интервале температур, достигающем несколько сот градусов (щелочные металлы, алюминий). Когда твердая фаза в точке плавления не имеет ОЦК структуры, во многих случаях после плавления г 8, Следовательно, строение жидкостей и в этих случаях можно охарактеризовать как ОЦК решетку, содержащую столь большое число дефектов, что дальняя упорядоченность атомов отсутствует. Таковы жидкие инертные газы, олово, алюминий, никель, висмут, германий, сурьма, галлий, индий, кадмий, ртуть. [c.269]

    Металлохимия. Метал,пы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболсзе характерно образование металлидов с V и sp-металлами, а также с элементами с полностью заполненными (п — 1) -орбиталями (металлы подгрупп меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют ни твердых растворов, ни металлидов. В то же время литий и Есатрий дают мегалли-ды с галлием и индием. С переходными металлами с дефектной (п — 1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. [c.310]

    Природные соединения и получение. В противовес алюминию металлы подгруппы галлия относятся к малораспространенным и рассеянным элементам. Практически сугцествуег один минерал галлия — галлит uGaS2, редко встречающийся (Южная Америка). Ввиду близости значений ионных радиусов А1(- -3) и Ga(- -3) галлий частично замещает алюминий в бокситах. Кроме того, параметры решеток GaS и ZnS почти одинаковы, а noTowiy галлий способен входить в виде примеси в сфалерит. Все это приводит к тому, что галлий присутствует в бокситах, сфалерите и полиметаллических рудах. Из отходов переработки боксита на глинозем или из полиметаллических руд галлий осаждают в виде гидроксида Оа(ОН)з. Затем выделяют галлий электролизом сильнощелочных растворов гидроксида. Полученный продукт содержит не более 99,5% основного металла. Галлий высокой чистоты получают переплавкой в вакууме. При этом примеси улетучиваются, а сам галлий практически не испаряется вследствие колоссальной разницы между температурами плавления и кипения (29,8 и 2070-С). [c.338]

    Способ адсорбционного концентрирования (как комплексов металлов с органическими лигандами, так и органических соединений) по своему принципу близок к рассмотренному в предыдущем разделе. Особую популярность он получил в последние годы. Благодаря адсорбционному концентрированию с помощью инверсионной вольтамперометрии удается определять щелочные и щелочноземельные металлы, элементы подгруппы алюминия и иттрия, не говоря уже о традиционных для инверсионной вольтамперометрии элементах, таких как 8п, РЬ, Сс1 и др. Как правило, адсорбционное концентрирование связано с применением поверхностно-активных веществ, вводимых в анализируемый раствор. При этом существенно, чтобы потенциалы электропревращения органического реагента и его соединения с металлом различались на максимально возможную величину. Преимуществом адсорбционного концентрирования является также слабое влияние потенциала электрода на адсорбцию комплексов, что позволяет проводить концентрирование даже при разомкнутой цепи. Нижняя граница определяемых концентраций в ряде случаев, например при определении серосодержащих соединений, достигает 10 - 10 моль/л и ниже. [c.431]

    Ионы с заполненными (закрытыми) наружными электронными оболочками, в свою очередь, подразделяемые на а) ионы с оболочкой инертного газа (ионы щелочных и щелочноземельных металлов, ионы алюминия и подгруппы скандия), сюда относятся и все ионы лантаноидов, хотя,в этом случае имеется более глубокая открытая 4/-элект-ронная оболочка, обычно не участвующая в химическом взаимодействии, б) ноны с замкнутой наружной /г i -oбoлoчкoй (Си+, Ag+, Аи+), ионы подгруппы цинка и галлия в) ионы с замкнутыми двумя оболочками (/г + 1) 5 Т1+, 5п +, РЬ +, В1 + и др. [c.16]

    Все три металла подгруппы V-A способны в неводных средах соосаждаться на катоде с другими металлами с образованием ср-ответствующих сплавов. Например, сплавы алюминия с мышьяком и сурьмой образуются в эфирногидридном электролите [301], сплавы сурьмы и галлия в глицериновом электролите [583]. Имеются данные об осаждении фосфора с отдельными металлами [580]. [c.160]


Смотреть страницы где упоминается термин Бор и металлы подгруппы алюминия: [c.310]    [c.38]    [c.148]    [c.159]    [c.212]    [c.340]    [c.115]   
Смотреть главы в:

Курс общей и неорганической химии -> Бор и металлы подгруппы алюминия




ПОИСК







© 2025 chem21.info Реклама на сайте