Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение, свойства и применение азота

    Получение, свойства и применение. В промышленности азот получают сжижением воздуха, который затем испаряется в специальных установках, причем азот испаряется первым и таким образом отделяется от других компонентов воздуха. [c.341]

    Краткая характеристика элементов подгруппы азота. Азот. Свойства азота. Аммиак, получение и свойства. Соли аммония. Окись и двуокись азота. Получение, свойства и применение азотной кислоты. Соли азотной кислоты. Азотные удобрения. [c.198]


    В ряду гетероциклических соединений с тремя и более гетероатомами в цикле (азот, азот и кислород азот, азот и сера) найдено много соединений с различной пестицидной активностью. Благодаря широкому спектру биологических свойств гетероциклы разных рядов привлекают все большее внимание исследователей, объем работ по синтезу и изучению пестицидной активности этих соединений непрерывно возрастает. Об этом свидетельствует тот факт, что наибольшее число патентов на способы получения и применение различных химических препаратов в качестве пестицидов из всех классов веществ [c.609]

    Амидная группа является важной составной частью многих биологически активных соединений, и поэтому знание способов получения, свойств и реакций амидов представляется существенным для дальнейшего развития таких областей, как химия полипептидов и белков. Многие имиды, гидроксамовые кислоты и гидразиды проявляют фармакологическую активность, что стимулирует в последнее время интерес к химии этих соединений. Помимо биологических аспектов, амиды представляют интерес для фундаментальных, химических исследований, так как сопряжение между неподеленной парой электронов атома азота и я-электронами карбонильной группы находит свое выражение в характерных физических. и химических свойствах. Включение в молекулу амида третьего гетероатома в а- или -положение к азоту аминогруппы, как в случае гидроксамовых кислот, гидразидов и имидов, усложняет их химические свойства, и здесь для понимания требуется уже применение современных физических методов. [c.389]

    Домашняя подготовка. Общая характеристика подгруппы азота. Распространение азота в природе. Получение азота в лабораторных условиях и в промышленности. Физические и химические свойства аз.ота. Водородные соединения азота. Аммиак. Получение аммиака в лабораторных условиях и в промышленности. Физические и химические свойства аммиака. Аммонийные соли. Кислородные соединения азота. Азотная кислота и ее соли. Азотистая кислота и ее соли. Применение азота и его соединений. Азотные удобрения. [c.200]

    ПОЛУЧЕНИЕ, свойства и ПРИМЕНЕНИЕ АЗОТА [c.189]

    ВОДОРОДНЫЕ СОЕДИНЕНИЯ АЗОТА. ПОЛУЧЕНИЕ, СВОЙСТВА И ПРИМЕНЕНИЕ АММИАКА [c.190]

    Азот в природе, свойства, получение и применение. ... [c.317]

    ПОЛУЧЕНИЕ, СВОЙСТВА И ПРИМЕНЕНИЕ АЗОТА [c.188]


    Для удаления соединений кислорода и азота такие средние масла следует подвергнуть предварительному парофазному гидрированию (насыщение или форгидрирование). Удовлетворительного удаления соединений азота и кислорода можно достигнуть при применении в качестве катализатора форгидрирования сульфида вольфрама однако при этом образуется также некоторое количество бензина с сравнительно низким октановом числом. Было найдено, что расщепляющую активность сульфида вольфрама можно практически подавить добавлением 15% сульфида никеля. Этот катализатор нашел промышленное применение особенно в процессе гидрирования диизобутена в изооктан. Катализатор с большим содержанием сульфида никеля применялся для реакций дегидрогенизации. Катализатор с аналогичными свойствами и той же активностью, но более дешевый, был получен при применении в качестве носителя активированной окиси алюминия. Этот катализатор содержит 70% окиси алюминия, 27% сульфида вольфрама и 3% сульфида никеля он нашел промышленное применение в качестве катализатора форгидрирования. [c.261]

    Плавиковая кислота. Попытки получения фтора. Применения. Распространение, получение и свойства брома и иода. Степень сходства с хлором. Соединения с водородом. Способ их получения и реакции. Кислородные соединения брома и иода. Йодистый азот. Соединения брома с окисью азота и иода с хлором. Выводы. [c.55]

    Принимая во внимание все изложенное, может создаться впечатление, что химические модификации целлюлозы представляют собой крайне нежелательные явления, изучение которых оправдано только надеждой, что будут открыты пути для их предотвращения, однако бывали случаи, когда они оказывались полезными. Например, в вискозном процессе используется контролируемая деградация щелочной целлюлозы воздухом, чтобы снизить вязкость продукта до нужного уровня (гл. ГХ) были найдены интересные применения для оксицеллюлоз, полученных с двуокисью азота (гл. IX), а подходящие слабые окисления гипохлоритом при pH 7 или 9 и особенно перйодатом улучшили относительные мокрые прочности некоторых целлюлоз [363]. Было также изучено, как на размалывающие свойства хлопковой целлюлозы влияет модифицирование серной кислотой, водным перманганатом и нейтральным гнпохлоритом [364]. Нет сомнения в том,что более глубокое знание физических и химических факторов, влияющих на модификацию целлюлозы и открытие новых реагентов, обладающих высокоселективным действием, со временем приумножат количество случаев, когда модифицированные целлюлозы будут представлять не только теоретический, но и практический интерес. [c.188]

    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]

    По физико-химическим свойствам получаемая ири перегонке сланцев смола отличается от природной нефти большей вязкостью, плотностью, высоким содержанием азота и кислорода. Свойства смолы в определенной мере зависят и от способа ее получения (табл. 3.13) [123]. Так как первичная сланцевая смола имеет высокую температуру застывания, обычно превышающую 20 °С, для получения из нее моторных топлив требуется предварительная переработка смолы, например коксование пли гидрирование. Смола, не прошедшая предварительную обработку, транспортируется до перерабатывающих предприятий ио специальным трубопроводам с обогревом. Определенную трудность при гидроочистке смолы может представлять наличие в ней твердых взвешенных частиц, которые должны удаляться центрифугированием или отгонкой тяжелого остатка. Гидроочистку смолы можно проводить без ее предварительного фракционирования с применением технологии гидрообессеривания нефтяных остатков. При этом для полного удаления азота потребуется от 260 до 350 м водорода на 1 м смолы (в зависимости от ее качества). Однако более целесообразно гидроочистку проводить до содержания азота в смоле л 0,15% (масс.), а затем после фракционирования подвергать гидроочистке бензин, средние дистилляты и газойль раздельно. В таком варианте общий расход водорода на очистку 1 м смолы составит в среднем 280 м  [c.112]


    Важнейшие области применения бериллия. Для бериллия характер-терен значительный разрыв между временем его открытия А. Вокеленом в 1798 г. и началом широкого промышленного применения в 30-х годах текущего столетия. Причина тому — трудности, связанные не только с переработкой бериллиевого сырья, но и со сложностью получения чистого металла, с его химической активностью, особенно большим сродством к газам, в первую очередь к кислороду и азоту. Отсутствие чистого бериллия как объекта исследования не позволяло долгое время оценить его замечательные свойства, а следовательно, и с наибольшей полнотой определить области его применения. Долгое время применение бериллия было связано лишь с использованием свойств его окиси, употреблявшейся для изготовления огнеупорных изделий, высококачественного фарфора для электроизоляторов, газокалильных колпачков и специальных стекол [3, 7, 16]. [c.186]

    Данная глава посвящена изучению методов получения, свойств и применения карбоцепных полимеров, имеющих в составе макромолекулы азот, серу, кремний и другие элементы, непосредственно связанные с основной цепью или находящиеся в а-положении к ней. К числу таких высокомолекулярных соединений относятся полимеры и сополимеры ненасыщенных аминов (винил-, аллиламины), нитрилов и амидов непредельных кислот (акриловой, метакриловой и т. д.), гетероциклических соединений, имеющих непредельные заместители (винилпиридин, ви-нилпирролидон, винилимидазол и др.), а также олефинов, содержащих серу (тиовиниловые эфиры, винилсульфоны, винил-сульфокислота и т. д.), кремний и фосфор, как, например  [c.436]

    Свойства, получение и применение мекоюрых соединений азота [c.444]

    Как получить двуокись азота 4. Рассказать о свойствах двуокиси азота. 5. Выразить уравнением процесс, происходящий при растворении двуокиси азота в воде. 6. Рассказать о составе, строении и физических свойствах азотной кислоты. 7. Какие химические процессы происходят при получении азотной кислоты из аммиака Выразить их уравнениями реакций. 8. Как получают азотную кислоту из аммиака 9. Как получают азотную кислоту в лабораторных условиях Привести уравнение реакции и условия ее осуществления. 10. Рассказать о химических свойствах азотной кислоты. И. Чем объясняются сильные окислительные свойства азотной кислоты Привести примеры, доказывающие эти свойства. 12. В чем особенность действия азотной кислоты на металлы 13. Какие газы выделяются при действии на медь азотной кислотька) концентрированной, б) разбавленной Привести уравнения реакций. 14. Что такое царская водка Для чего ее применяют 15. Рассказать о применении азотной кислоты и о ее значении в народном хозяйстве. 16. Как называют соли азотной кислоты Примеры. 17. Привести формулы селитр, их названия и применение. 18. Написать уравнение реакции, происходящей при нагревании азотнокислого [c.167]

    Цель данной книги — дать читателям основнгле сведения о синтезах органических соединений, которые тем или иным образом связаны с применением карбонилов металлов или их производных. В соответствии с планом было предусмотрено написание вводной главы, посвященной синтезу и свойствам карбонилов металлов и родственных комплексных соединений. После нее должны были следовать глава, посвященная комплексам, содержащим лиганды, синтезированные из соединений ацетиленового ряда и окиси углерода, и глава, касающаяся получения и применения в некоторых синтезах алкил- и ацил-производных карбонилов металлов и, в частности, карбонилов кобальта. Далее предполагалось поместить ряд глав, в которых должно было рассматриваться применение карбонилов металлов и родственных соединений в качестве катализаторов для синтеза органических соединений. Эта область, вероятно, потребовала бы написания шести самостоятельных глав, систематизирующих литературный материал в зависимости от природы используемого вещества. К последним относятся предельные органические соединения, оле-фины (реакции оксо-синтеза и родственные процессы), аллильные соединения, ацетиленовые углеводороды, а также молекулы, содержащие азот. Реакции [c.9]

    Исследование адсорбции азота, кислорода и аргона на молекулярном сите 4А и возможность разделения газовых смесей. Цемброневич А., Л я с о н ь М. (ПНР). — В кн. Адсорбенты, их получение, свойства и применение. Л., Наука , 1978, с. 165—169. [c.233]

    Далее остановимся на работах по синтезу, исследованию и применению многофункциональных присадок рассматриваемого типа, проводимых в ЙХП АН АзССР. Процесс синтеза полимерных многофункциональных присадок включает следующие стадии получение исходного полимерного соединения, взаимодействие его с сульфидом фосфора (V) (фойфоросернение) и нейтрализацию фосфоросерненного полимера различными агентами. Сотрудниками ИХП АН АзССР получен ряд полимерных многофункциональных присадок, наиболее эффективными из которых оказались присадка ИХП-388, содержащая серу, фосфор и металл, и присадка ИХП-361, содержащая серу, фосфор, азот и бор. Они самостоятельно и в композициях с другими присадками значительно улучшают свойства масел. [c.209]

    В 1916 г. Бергиус построил первый экспе )иментальный завод вблизи Маннгейма однако до 1921 г. успехи были сравнительно незначительными. На этой установке угольную пасту гидрировали в горизонтальиы.х реакторах, в которых для предотвращения коррозии стальных стенок водородом при высоких давлениях и подвода необходимого тепла между внешней стенкой реактора и внутренней камерой циркулировал нагретый азот, сжатый до давления реакции. Полученные на этой установке продукты содержали бензин, дизельное и котельное топливо. Свойства этих продуктов были сходны со свойствами смолы, образовавшейся при полукоксовании того же угля. Пределы кипения свойства масла мo жнo было менять только в очень узких пределах, а полученные топлива по своим свойствам уступали продуктам переработки нефти. Присутствие в маслах, полученных гидрогенизацией угля, фенолов и азотистых оснований, являвшееся недостатком при применении их в качестве топлива. [c.255]

    Опыты, в которых проекция играет вспомогательную роль, так как проецируется только часть процесса с целью фиксации существенных деталей, отдельных стадий протекающих процессов, не воспринимаемых при прямой демонстрации или с целью фиксации конечных (контрольных) стадий опытов, сопряженных с применением незначительных количеств реактивов или весьма разбавленных растворов индикаторов. Таковыми, например, являются опыты по получению и изучению свойств озона, по сжиганию атмосферного азота, образованию аммиака из азотоводородной смеси при атмосферном давлении. [c.152]

    Применение в энергетике. Гелий применяется в ядерной энергетике как источник а-частиц (ядра гелия). Ксенон 54X6 обладает свойством поглощать тепловые нейтроны, поэтому также применяется в атомной энергетике. Благородные газы, преимущественно неон, используются для изготовления светотехнических приборов (маяков, рекламы и т. п.). Смесью аргона с азотом наполняют лампы накаливания. Жидкий гелий применяется для получения очень низкой температуры (—272,2 К), при которой у многих металлических веществ обнаруживается сверхпроводимость. [c.235]

    Плотность кальция 1,55 г/сл , температура плавления 85ГС, температура кипения 1440° С. По химическим свойствам кальций близок к натрию, отличаясь от последнего резко выраженными гетерными свойствами — способностью соединяться при нагревании на воздухе не только с кислородом, но и с азотом и водородом. Основное применение кальций имеет как восстановитель в химической и металлургической промышленности, а также как раскислитель для медных сплавов и специальных сталей. Заслуживает внимания применение кальция для получения гидрида СаНг, имеющего значение как восстановитель при получении тугоплавких металлов и в процессах органической химии. Гидрид кальция может быть также источником получения водорода в полевых условиях. Кальций может применяться также для извлечения висмута при рафинировании свинца, хотя для этой цели выгоднее получать непосредственно сплавы Са—РЬ электролизом хлоридов кальция и натрия с жидким свинцовым катодом. [c.321]

    Наибольшее применение в качестве термо- и влагостойких покрытий получили кремнийорганические эмали ПКК, КО-83, КО-84, КО-96, КО-811, КО-813, КО-814 и др. Для улучшения их свойств и получения термостойких покрытий естественной сушки используются полиорганосилозаны, представляющие собой полимеры, цепь которых состоит из чередующихся атомов кремния и азота [29]. [c.82]


Библиография для Получение, свойства и применение азота: [c.235]   
Смотреть страницы где упоминается термин Получение, свойства и применение азота: [c.149]    [c.394]    [c.15]    [c.43]    [c.144]    [c.5]    [c.111]    [c.217]   
Смотреть главы в:

Химия с сельскохозяйственным анализом -> Получение, свойства и применение азота

Химия с сельскохозяйственным анализом -> Получение, свойства и применение азота

Химия -> Получение, свойства и применение азота




ПОИСК





Смотрите так же термины и статьи:

Азот получение

Азот, свойства

Водородные соединения азота. Получение, свойства и применение аммиака

Свойства я применение азота

получение и свойства



© 2025 chem21.info Реклама на сайте