Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение молекулярных масс нерастворимых полимеров

    III. 2.5. Определение молекулярных масс нерастворимых полимеров [c.196]

    В работе [249] разработан метод скоростной нефелометрии для определения молекулярно-массового распределения полиэтилена. Этот метод, как и разделение в температурном градиенте, основан на зависимости растворимости полимера от температуры. Раствор очень небольшого количества полимера в смеси растворителя (а-хлорнафталин) и иерастворителя медленно охлаждают. Молекулы с высокой молекулярной. массой становятся нерастворимыми, вызывая небольшое помутнение. При дальнейшем снижении температуры количество осажденного полимера растет в соответствии с его молекулярной массой. Наконец, достигается температура, при которой даже фракции с самой низкой молекулярной массой становятся нерастворимыми. При этой температуре мутность максимальна, и в идеальном случае весь растворенный полимер становится нерастворимым, но остается в объеме в виде тонкой суспензии. Если построить график зависимости возрастания мутности раствора с понижением температуры, то получится кривая, сходная с кривой зависи.мости массы фракции в процентах от ее молекулярной массы. Рост мутности соответствует общей массе фракции в процентах, а молекулярная масса соответствует снижению температуры. [c.78]


    Методы определения концентрации концевых групп и осмометрии широко распространены для полиамидов, причем метод определения концентрации концевых групп особенно часто используют для оценки молекулярной массы поликонденсационных полиамидов. Однако их применение ограничено необходимостью полного растворения образца в выбранном растворителе. Для нерастворимых и частично растворимых полимеров, а также полиамидов с очень высокой ММ должны использоваться другие методы. [c.74]

    Это одна из важнейших характеристик полимера, по которой можно судить о степени сшивания. При определении растворимости следует иметь в виду, что полимеры обычно либо полностью растворимы, либо практически нерастворимы или ограниченно набухают в растворителе. Ограниченная растворимость или набухание являются типичными признаками полимеров с очень высокой молекулярной массой. [c.40]

    Поведение спиртов, как показано на рис. 5, также отличается от поведения описанных выше соединений причиной этого является нерастворимость полимера в спирте, выше определенной концентрации последнего. Начальные участки кривых имеют обычное направление, а большие значения К указывают на то, что радикалы образуются легко. Максимум имеет место неносредственно неред участком, соответствующим осаждению. Последующее уменьшение скорости, сопровождающееся уменьшением молекулярного веса, вызвано-увеличением вероятности обрыва в коагулирующей массе. [c.235]

    ХОДИТ до определенного значения независимо от исходной молекулярной массы образца. Исследование деструкции полиамида с неблокированными и блокированными уксусной кислотой концевыми группами показало, что уменьшение массы не зависит от типа концевых групп, и, следовательно, разложение полиамидов происходит в основном по закону случая. Установление равновесной молекулярной массы при термической деструкции при температуре 300 С объясняется развитием процессов сшивания, которые при более высоких температурах преобладают над деструкцией после 6 ч нагревания полиамида 66 при температуре 300 °С образуется нерастворимый в крезоле продукт, содержание которого составляет 97%. Аналогичным образом при нагревании ведут себя и другие полимеры, для которых также наблюдаются уменьшение молекулярной массы (рис. 32.8, 32.9, 32.10) и сшивание, скорость которого увеличивается с повышением температуры. Например, при нагревании поликарбоната в непрерывно вакуумируемой системе прн повышении температуры от 300 до 400 °С преобладает сшивание (см. рис. 32.10) энергия активации процесса составляет 103 кДж/моль. [c.236]


    Свойства сшитых полиолефинов определяются множеством факторов, важнейший из которых —показатель сшивания [в ряде работ используют понятие плотности сшивания, которое либо совпадает с понятием показателя сшивания, либо выражается как а) концентрация эффективных цепей, б) число узлов сшивания, отнесенное к 1000 углеродных атомов, в) молекулярная масса участка цепи, заключенного между двумя узлами Мс] [374, 382], Методы равновесного набухания, определения модуля сдвига при кручении и некоторые другие позволяют с достаточным приближением получать количественную информацию о плотности сшивания и ее влиянии на свойства сшитых полиолефинов, С увеличением показателя сшивания снижаются относительное удлинение (рис. 9.9, а), плотность полиолефинов (рис. 9.9,6), их деформируемость под действием механических нагрузок (рис. 9.10). Содержание гель-фракции мало изменяется с плотностью сшивания (рис. 9.11). Уже при небольшом показателе сшивания экстрагируемая часть полимера мала. Теоретически для образования нерастворимого геля достаточно двух узлов сшивания на макромолекулу, однако в зависимости от ММР полиолефина при одном и том же показателе сшивания содержание гель-фракции может быть различным. [c.215]

    Молекулярная масса. Для П. со степенью полимеризации 150—200 и меньше мол. масса м. б. определена анализом концевых групп. Этот метод применим лишь при отсутствии циклич. пептидов и низкомолекулярных примесей, содержащих функциональные группы, аналогичные концевым группам линейного П. Концевые аминогруппы м. б. определены титрованием хлорной к-той (в неводной среде в присутствии кристаллич. фиолетового) или методом потенциометрич. титрования. Определение концевых аминогрупп по Ван-Слайку (измерением объема азота, выделяющегося при обработке пептида азотистой к-той) возможно даже в случае нерастворимых в воде полимеров. Иногда П. обрабатывают 2,4-динитрофторбензолом и определяют количество модифицированных концевых групп спектрофотометрически. Концевые карбоксильные группы м. б. оттитрованы метилатом натрия в органич. растворителе-в присутствии тимолового синего. С-Концевая аминокислота П., полученного полимеризацией карбоксиан-гидридов а-аминокислот (см. ниже), может нести специфич. эфирную или амидную группировку катализатора полимеризации, которая м. б. подвергнута количественному анализу. [c.14]

    Мономеры с несколькими изолированными двойными связями полимеризуют суспензионным методом только в тех редких случаях, когда требуется получить неплавкий и нерастворимый полимер в виде сферических гранул определенного диаметра. Такие гранулы применяют в качестве наполнителя для некоторых видов пластических масс, для изготовления ионообменных фильтров, предназначенных для разделения смесей электролитов , в качестве молекулярных сит для разделения смесей гомологов или полимергомологов .  [c.146]

    Чувствительность метода концевых групп повышается, если ввести в макромолекулу при реакции замещения радиоактивные изотопы или группы с новыми спектральными частотами. Например, Г. Каммерер [7] применял инициаторы, содержащие 4-беп-золазобензильную группу, с высоким коэффициентом экстинкции, что позволило обнаружить эту группу в полимерах с молекулярной массой до 10 (близко к чувствительности радиохимических методов). Химические методы замечательны еще тем, что при применении их возможны определение молекулярной массы твердых пленок полимеров и непосредственный расчет количества цепей в навеске полпмера, что очень важно для нерастворимых продуктов [c.545]

    Существенное влияние на растворимость при сходном химическом составе и молекулярном весе оказывает строение цепи макромолекул. Так, в общем случае, полимеры, имеющие разветвленную структуру благодаря более рыхлой упаковке в массе, растворяются легче, чем линейные. Так, например, крахмал и декстраны растворимы р. воде в широком диапазоне молекулярных весов, а целлюлоза только слабо набухает. Полимеры, имеющие жесткую плоскостную структуру (например, сажа, графит), лишь слабо набухают в некоторых жидких металлах и нерастворимы. Полимеры, имеющие пространственную сверхмолекулярную структуру, как указывалось выше, нерастворимы без разрыва определенной части химических связей, но набухают, если густота сетки допускает диффузию растворителя внутрь массы полимера. В отдельных случаях при набухании объем увеличивается в несколько десятков раз, а в случае густой сетки, как у алмаза, полимер совершенно не способен к набуханию. [c.16]

    Значительная часть нерастворимого в пиридине материала может быть переведена в раствор после восстановления литием в этилендиамине. Растворимая часть восстановленных таким образом продуктов имеет среднюю молекулярную массу в интервале 2000—3000 [14]. Отсюда следует, что молекулы мезофазы не являются истинными полимерами, а димерами, тримерами или тетрамерами молекул исходного пека, т. е. состоят примерно из 20— 40 конденсированных ядер. Зависимость условий образования мезофазы от размера и формы молекул и молекулярно-массового распределения имеет важное значение. Вероятно, теория, аналогичная разработанной Флори [15] для стержнеобразных молекул, могла бы быть развита и для плоских ароматических молекул, присутствующих в углеродистой мезофазе. Онзагер [16] и Ишихара [17] рассмотрели взаимодействия в системе эллипсоидных молекул или частиц определенного типа. [c.196]


    Согласно данным работы [1363], в ПВХ очень низкой молекулярной массы содержится группировка 1-хлорпентена-2, которая при гидрохлорировании превращается в 1,2-дихлорэти-лен. Полимер содержит две-три двойные связи на 1000 мономерных единиц. Определение свинца в ПВХ обсуждается в работе [1364]. Описан [1365, 1366] метод определения содержания геля в ПВХ, основанный на растворении полимера в подходящем растворителе с последующим разделением растворимых фракций и нерастворимого геля, который отделяли центрифугированием. Точность этого метода при низких содержаниях геля невысока. [c.301]

    Для определения общего содержания гидроксиметильных [451] и мостиковых простых эфирных групп [452] в фенольных смолах применяются химические методы, которые, однако, не дают возможности установить распределение этих групп относительно фенольных колец и гидроксильной группы фенолов. Для определения ряда функциональных групп, например гидроксиметильных [453], а также средней степени замещения и положения заместителей в бензольном кольце [453—456] использовали ИКС, которая является одним из немногих методов, применимых для исследования структуры нерастворимых фенольных полимеров с поперечными связями. Однако в большинстве случаев этим методом получают только качественные результаты. Как было показано в работах [457, 458], методы бумажной хроматографии применимы только при изучении начальных стадий реакции. Они позволяют определить концентрации различных гидроксиметилированных фенолов и некоторых биядер-ных соединений. Для измерения концентраций специфических моноядерных компонентов в резольных форполимерах, которые перед проведением анализа ацетилировали для уменьшения активности, использовали газо-жидкостную хроматографию [459]. Рентгеноструктурный анализ позволяет получить информацию о геометрической структуре некоторых низкомолекулярных кристаллических компонентов, входящих в состав смол. Каждый из упомянутых методов в отдельности дает очень ограниченную информацию. Каждый конкретный метод часто оказывается неприменимым для всех типов полимеров или для продуктов разной молекулярной массы даже в случае растворимых смол. Кроме того, большинство из этих методов не являются количественными кроме того, их точность неудовлетворительна. [c.523]

    В Карл-Маркс-Штадте разработан новый способ подготовки до сих пор недостаточно используемого текстильного вторичного сырья. С помощью селективного растворителя ценные полимерные компоненты (полиэтилен-терефталат, полиамиды П-6 и П-6.6) отделяют от нерастворимых сопутствующих компонентов (шерсти, вискозы, хлопка и т. д.) и используют как высококачественный материал. В качестве растворителей применяют галогенуглеводороды (дихлорметан--для полиэтилентерефталата) и спирты (метанол — для полиамидов). Полимеры высаждаются в виде порошка, далее их перерабатывают в агломераты или грануляты. Полученные полимеры по сравнению с первичными более неоднородны по свойствам (в том числе, по молекулярной массе), однако они сравнимы с регенератами, которые получают из гомогенного текстильного вторичного сырья. Вторичное сырье может быть использовано для нанесения покрытий, для производств пленок, а также изделий литьем под давлением. Выпадающие в качестве осадка нерастворимые текстильные сопутствующие компоненты можно перерабатывать преимущественно в картонную основу для толя или, в определенных случаях, в регенерированное волокно [141]. [c.117]


Смотреть страницы где упоминается термин Определение молекулярных масс нерастворимых полимеров: [c.134]    [c.190]    [c.99]    [c.14]    [c.473]    [c.609]   
Смотреть главы в:

Анализ полимеризационных пластмасс -> Определение молекулярных масс нерастворимых полимеров




ПОИСК





Смотрите так же термины и статьи:

Масса определение

Молекулярная масса

Молекулярная масса определение

Молекулярная масса полимеров

Молекулярный вес (молекулярная масса))

Молекулярный вес, определение

Полимеры массы

Полимеры определение

Полимеры определение молекулярной



© 2025 chem21.info Реклама на сайте