Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность адсорбции азота

    Для частиц третьей группы — зерен молотого кварца удельную поверхность определяли по адсорбции азота. Сопоставление Со с данными по продувке даёт среднее значение /Сш = 5. Аналогичные результаты получены при прямых промерах размеров крупных кусков кокса [64]. Значение Ки = Кш = 5 мы и примем как наиболее достоверное для частиц второй и третьей групп. [c.57]

    Важной характеристикой аммиачного катализатора является способность образовать нитриды, которые должны быть достаточно неустойчивы, чтобы легко реагировать с водородом. Стадией, определяющей скорость реакции, является адсорбция азота, хотя водород и аммиак тоже адсорбируются на поверхности катализатора. Уравнение скорости, общепринятое в настоящее время, приведено в задаче V1I-9.,  [c.325]


    Удельную поверхность катализатора обычно измеряют методом БЭТ по физической адсорбции азота. На основании предположений о форме частиц и их известной плотности можно рассчитать средний диаметр частиц. Если частицы порошка агломерированы, этот способ даст результаты, не согласующиеся с результатами, найденными по измерениям уширения рентгеновских линий. Для нанесенных металлов и многокомпонентных оксидных систем общая поверхность образца не является очень важной характеристикой. Поверхность нанесенных металлов, как правило, определяют методом селективной хемосорбции. При этом приходится предположить, что на носителе адсорбция не происходит, и в интерпретации результатов можно быть уве- [c.30]

    Удельная поверхность по адсорбции азота [c.258]

    Используя уравнение БЭТ, рассчитайте удельную поверхность адсорбента по изотерме адсорбции азота  [c.69]

    В обоих указанных выше случаях два одновременно хемосорбированных газа не взаимодействовали друг с другом. Если же они способны взаи.модействовать между собой, то ожидаемые закономерности будут носить более сложный характер. Изучению этих закономерностей путем прямых хемосорбционных измерений посвящено сравнительно небольшое число работ. Бик [60] изучал одновременную хемосорбцию азота и водорода на пленках железа. Как отмечалось в разделе IX, 12, энергия активации адсорбции азота после покрытия им 20 всей поверхности становится слишком высокой для того, чтобы при комнатной температуре могла протекать дальнейшая хемосорбция. Бик установил, что если водород адсорбируется первым и степень заполнения поверхности им равна Йн, то поверхность сможет адсорбировать меньшее количество азота, а именно  [c.161]

    Цель работы. Получить-изотерму низкотемпературной адсорбции азота. По данным, рассчитанным на ее основе, вычислить удельную поверхность адсорбента. [c.123]

    Схема простой установки, пригодной для измерения адсорбции азота при —196°С объемным методом на адсорбентах с удельной поверхностью, большей 5 м-/г, представлена на рис. 26. [c.45]

    Для определения удельной поверхности чаще всего используется изотерма низкотемпературной адсорбции азота на поверхности исследуемого адсорбента. [c.30]

    По изотерме адсорбции азота определить удельную поверхность адсорбента (Г = 77 К, 5о= 16,2-10" м )  [c.44]

    По изотерме адсорбции азота определить удельную поверхность адсорбента. Т = 77 К, 5 = 16,2-10 м . Объем адсорбированного газа приведен к нормальным условиям  [c.44]


    При выводе этого уравнения М. И. Темкин исходил из того, что при синтезе аммиака скорость реакции определяется скоростью активированной адсорбции азота, являющегося единственным адсорбированным газом на железе. При этом он также учитывал неоднородность поверхности катализатора, которая характеризуется параметром а [см. уравнение (XV. ) ]. Полученное уравнение находится в согласии с опытом. Оно имеет вид [c.411]

    Следует также отметить, что зависимость скорости химической реакции от давления в значительной степени определяется конкретным способом ее проведения. Так, например, при синтезе аммиака, который проводится с помощью твердого катализатора (железо, промотиро-ванное оксидом алюминия и оксидом калия), скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности катализатора, свободного от адсорбированного азота. Опыты по синтезу аммиака при 500 °С и давлениях до 50,6 МПа показали, что при давлениях свыше 10,1 МПа начинается ио-степенное уменьшение константы скорости реакции. Анализ экспериментальных результатов показал, что они объясняются отмеченным явлением — кинетикой активированной адсорбции. [c.180]

    Адсорбционные характеристики и способность кремнезема диспергироваться в органической среде резко изменяются после покрытия гидрофильной силанольной поверхности гидрофобным органическим материалом. Модификация поверхности кремнезема изменяет теплоту адсорбции и угол контакта жидкой фазы адсор-бата со стенками капилляров таким образом, меняется форма изотерм адсорбции. Значение гидрофильносги или гидрофобности поверхности тонкодиспергированных частиц было описано в недавно опубликованной статье Беллоу и Росса [143], которые изучали адсорбцию воды и бензола на дисульфиде молибдена. Частицы эгого соединения покрывали гидрофильным слоем трехокиси молибдена при нагревании на воздухе до 110°. Этот окисный слой удаляли обработкой гидроокисью аммония прн обычной температуре или путем использования этой обработки и поСоТедующего воздействия сероводорода при 125°, который создавал, гидрофобную сульфидную поверхность. Адсорбцией азота было определено, что удельная поверхность дисульфида молибдена равнялась примерно 9 -и /г. Было обнаружено, что бензол может образовывать мономолекулярные слои на гидрофильной и гидрофобной поверхностях. С [c.165]

    Внедрение этиленгликоля между слоями гидратированных минералов, таких как энделлит или монтмориллонит, дает новый путь измерения удельной поверхности, согласно Диалу и Гендрик-су [108]. В минералах такого типа, в которых слои разрушаются при удалении воды, не представляется возможным измерить общую поверхность адсорбцией азота, так как для этого требуется, чтобы образец был первоначально высушен под вакуумом. Метод адсорбции азота поэтому измеряет только внешнюю поверхность агрегата минерала. После того как минерал полностью дегидратирован, гликоль не внедряется между слоями. Таким образом,, внутренняя поверхность может быть измерена по разнице в количестве гликоля, адсорбированного соответственно на гидратированных и дегидратированных образцах. [c.211]

    Коллоидальные синтетические графиты отличаются большой удельной поверхностью (нередко она превышает 100 м /г) и высокой гелиевой плотностью (порядка 2,23 г/см ). Пористость указанных графитов всегда обусловлена их тонкой микроструктурой. Если в такой структуре имеются мельчайшие капилляры диаметром, равным величине молекулы, то к результатам замера площади поверхности графита, произведенного обычными методами, надо относиться с большой осторожностью. Так, при комнатной температуре небольшие молекулы могут задерживаться в ультрамикропорах в связи с эффектом действия молекулярных сит [28]. Для материалов, получаемых из каменного угля, имеющих в значительной мере ультратонкую структуру, низкотемпературные методы определения удельной поверхности (адсорбцией азота при —196 °С) не применимы, так как в этих условиях диффузия молекул адсорбента через поры, размер которых чуть больше их собственных размеров, протекает очень медленно и для ускорения диффузии требуется сравнительно большая энергия активации [29, 30]. [c.69]

    Поверхность частиц первой группы можно найтк по приближенным геометрическим зависимостям с предварительным обмером линейных размеров частиц по главным осям. Так, Вилли и Грегори [26 определяли размеры сфероидальных частиц с номинальным диаметром 0,279 и 0,127 мм обмером под микроскопом и с помощью проектора, а также методом измерения длин отрезков зерен, пересекаемых бросаемой на шлиф стальной иглой. Результаты измерений усреднялись по данным 200— 600 опытов. Для более мелких частиц с номинальным диаметром 0,028 мм удельную поверхность Оо измеряли по адсорбции азота. Полученные различными методами значения oq совпадали как друг с другом, так и с ао, определенной по перепаду давления из соотношения (П. 55) при Ki = 4,8 с точностью 5%. [c.57]


    По изменению концентрации азота в смеси в результате адсорбции (.дцсорбционный пик) рассчитывалась степень заполнения поверхности азотом по времени адсорбции. По мере отработки катализатора снижается скорость адсорбции азота (рис. 3.38). Если для 75%-ного заполнения внутренней поверхности свежего образца узкопористого катализатора требуется 1,4 мин, то для образцов, проработавших на остаточном сырье в течение 100, 427 и 1660 ч, требуется 1,95, 2,35 и 3,3 мин соответственно. Скорость адсорбции на катализаторе, характеризующемся более широкопористой структурой, значительно больше, чем на образце катализатора с узкопористой структурой и меньше изменяется при отработке катализатора 75% внутренней поверхности заполняется азотом на свежем широкопористом катализаторе за 0,8 мин, а на проработавшем 8000 ч за 0,95 мин по сравнению с 1,4 мин для свежего узкопористого катализатора. Одновременно в процессе переработки остаточного сырья происходит снижение удельной поверхности и активности катализатора, вызванное отложением кокса и металлов на внутренней поверхности гранул (рис. 3.39). [c.137]

    Выше бы го подробно рассмотрено одно из наиболее важных свойств адсорбента — его избирательная адсорбционная емкость, а та1 жс влияние на нее температуры. Удельная поверхность адсорб( нта, таки е яиляющаяся весьма важным свойством, обычно определяется по мс тоду Брунауэра, Эмметта и Теллера 12], получившему название метода БЭТ. Избирательная адсорбционная емкость адсорбентов для толуола, растворенного в изооктане, изменяется пропорционально удельной поверхности, измеренной но адсорбции азота [40] или бутана [9]. [c.159]

    Адсорбция молекул, имеющих диполи, квадруполи и л-связи, весьма чувствительна к удалению с поверхности гидроксильных групп. При дегидратации поверхности силикагелей адсорбция воды, спиртов, эфира и других полярных веществ и также азота (молекула азота обладает большим квадрупольным моментом), непредельных и ароматических углеводородов резко уменьшается. На рис. ХУН1, 7 показано уменьшение адсорбции азота и постоянство адсорбции аргона, а также уменьшение теплоты адсорбции пара бензола при дегидратации поверхности силикагеля. [c.500]

    Очень важным свойством катализаторов является их пористая структура. Ее обычно характеризуют по физической адсорбции и десорбции газов, а также методом ртутной поромет-рии. Для пор размером 20—500 А надежен и весьма полезен метод адсорбции азота. По форме петель гистерезиса адсорбции и десорбции определяют форму и размер пор [34]. Для крупных пор размером 100—150 мкм часто используют ртутную порометрию. Поскольку прилежащий угол между поверхностью ртути и несмачивающимся твердым веществом превышает 90°, ртуть может войти в поры только под давлением. Если известна зависимость объема ртути, который вдавлен в поры катализатора, от приложенного давления, то можно найти распределение пор по размерам. При этом приходится делать некоторые предположения о форме пор, а также считать, что поры выходят на поверхность и не связаны между собой. Микропоры диаметром менее 20 А нельзя надежно измерить никаким методом. Для их изучения рекомендуются молекулярные зонды различных размеров и форм. Таким образом, хотя знание nopH Toff структуры чрезвычайно важно, надежное измерение ее может быть затруднено. [c.31]

    Величины 5м были рассчитаны из предположен 1я, что молекулы представляют собой сферы, образующие гексагональную упаковку [43]. Было предположено также, что плотность адсорбата на поверхности равна плотности соответствующего жидкого или твердого вещества, взятого при температуре измерения адсорбции [38, 43]. Чаще всего при определении удельной поверхности в качестве адсорбата используется азот, и величина 5м для него принимается равной 16,2 А . В ряде работ [15,48] имеются указания на то, что 5м для азота при— 95 "С может изменяться от 14,5 до 19 А на молекулу на разных поверхностях вследствие различий в ориентации, упаковке и силе взаимодействия с поверхностью. При адсорбции азота, как правило, юлучаются изотермы II типа с крутым изгибом, при этом значения о , рассчитанные с помощью уравнения БЭТ, и значение Vв очень близки. Поэтому азот представляется особенно удобным адсорбатом, позволяющим проводить экспериментальную проверку правильности определения удельной поверхности путем расчета по изотерме адсорбции [37]. [c.295]

    Было предложено много механизмов реакции, но вследствие их почти универсальной применимости для проектирования установок здесь рассматривается только механизм, предложенный Темкиным и его сотрудниками. Первое кинетическое уравнение, дающее приемлемое соответствие с наблюдаемыми скоростями, было предложено Темкиным и Пыжовым в 1940 г. [70]. Это уравнение ос-, новывается на предположении, что адсорбция азота на неоднородной поверхности является стадией, определяющей скорость процесса. В результате приходим к хорошо известному в настоящее время уравнению для скорости внутреннего реакционного процесса., протекающего в отсутствии диффузионного торможения  [c.167]

    Блок-схема хроматографической установки, используемой для определения удельной поверхности адсорбентов методом тепловой десорбции, представлена на рнс 13. Потоки гелия и азота нз баллонов 1 и 2 подаются в определенном соотношении в смеситель <3, и которого газовая смесь поступает в сравнительную камеру детектора 6 и далее в колонку 8 с исследуемым адсорбентом, в которой прн охлаждении происходит адсорбция азота. Из колонки газоиая смес[1 поступает в измерительную камеру детектора 7. Детектор фиксирует изменение состава газовой смеси в результате адсорбции. Сигнал детектора Iосту-нает на самопишущий потенциометр 5. [c.50]

    Удс.лы1ая поверхность силикагеля, найденная методом низкотемпературной адсорбции азота, составляет 4,1-10 м /кг. Плотность силикагеля 2,2 г/см . Рассчитайте средний диаметр частиц силикагеля, [c.68]

    Измерена адсорбция азота на низкодисперсном непористом порошке. Иайдено, что при 77 и 90 К степень заполнения поверхности 0, равная 0,5, достигается при p/ps соответственно 0,02 и 0,2. Пользуясь уравнением БЭТ, рассчитайте изостерическую теплоту адсорбции, а также дифференциальные изменения энтропии и энергии Гиббса адсорбции при 77 К. Теплота испарения жидкого азота нри 77 К составляет 5,66 кДж/моль. [c.72]

    Приведенные случаи очень часты в гетерогенном катализе, и их применяют для расчетов кажущихся порядков реакции. И. Лэнгмюр показал, что его уравнение изотермы адсорбции хорошо выражает зависимость между величиной адсорбции газа и концентрацией при постоянной температуре. Из этого же уравнения можно путем расчета определить степень покрытия поверхности при максимальной адсорбции. Так, например, для адсорбции азота на слюде при 90° предел адсорбции найден равным 1,4-10 г-мол1см . Грамм-молекула жидкого азота содержит 6,06-10 молекул и занимает объем 35 см . Частное от деления объема 1 г-мол жидкого азота на число Авогадро [c.106]

    В работе исследовали изменение концентрации КФГ при термообработке ШУ (исходного и после обработки кислотой) в восстановительной атмосфере (до 1200 С) в сравнении с двумя типами ТУ (печным и ацетиленовым ф.ВогеаИз) и порошком стеклоуглерода (СУ-2000). Для определения КФГ на поверхности углерода использована сгапдартная методика с помошью титрования щелочными растворами различной основности, для определения удельной поверхности (S ,j) -низкотемпературная адсорбция азота по методу БЭТ. [c.175]

    Сходным образом ведут себя молекулы, у которых распределение зарядов более сложно. В молеку.те углекислоты распределение зарядов носит характер квадруполя. Ленель [36] определил расчетным путем то влияние, которое оказывает на энергию адсорбции взаимодействие квадруполя с поверхностью кристалла галоидной соли щелочного металла, и пришел к выводу, что оно может вызвать увеличение энергии адсорбции прнбл Изительно на 3 ккал/моль. Недавно Дрэйну [37а] удалось получить очень важный результат, который состоит в том, что теплота адсорбции азота на ионных кристаллах во многих случаях оказывается значительно большей, чем теплота адсорбции кислорода и аргона на тех же поверхностях, чего не наблюдается, когда эти газы адсорбируются на поверхностях, не имеющих ионного характера. Как было показано названным автором, аномальное поведение молекул азота обт ясняется наличием у них квадруполей. Мы вернемся к этой проблеме в разделе VI, 2. [c.38]

    Адсорбции аргона, кислорода и азота на хлористом калии посвящено большое число теоретических и экснериментальных исследований [36, 105, 106], В книге Брунауэра по физической адсорбции [17] дан обзор соответствующих работ. Все исследователи, ио-видимому, согласны с тем, что для адсорбированного атома или молекулы наиболее благоприятным является расположение непосредственно над центром элементарной ячейки кристаллической решетки. В этом месте электростатическая поляризация минимальна, а неполярные силы Ваи-дер-Ваальса имеют максимальную величину и играют преобладающую роль [107]. Дрэйн [37а[ обратил внимание на то, что энергия адсорбции азота на ионных поверхностях обычно выше, чем аргона или кислорода, в то время как в случае ненонных поверхностей внергии адсорбции вссх трех газов практически одинаковы. Он приписал этот эффект влиянию квадрупольного момента азота и рассчитал слагаемое энергии адсорбции, появляющееся в результате притяжения квадруполя молекулы азота полем кубической грани кристалла хлористого калия. Согласно этим расчетам, участки поверхности кристалла, расположенные тюносредственно над центром элементарной ячейки, по-прежнему остаются наиболее благоприятными для адсорбции. Найденное значение слагаемого энергии адсорбции, обусловленного притяжением [c.71]

    Родин [173] приготовил три монокристаллическнх образца меди, поверхности которых представляли собой различные кристаллографические грани, и измерил адсорбцию азота на этих гранях прн разных (пониженных) температурах. Полученные им результаты приведены на рис. 24. При рассмотрении [c.110]

    Во всех случаях, когда энергия активации наблюдается уже прн 0=0 (например, при адсорбции азота на железе, водорода на загрязненных поверхностях металлов см. раздел V, 9), с увеличением О она возрастает. Энергия активации растет медленнее, чем падает теплота хемосорбции. Изучение рис. 37 показывает, что эти величины должны быть связаны между собоГ именно такой зависимостью. При ослаблении связи с поверхностью максимумы потенциальных кривых смещаются влево, а минимумы кривых либо остаются на том же расстоянии от поверхности (как показано на приведенном ри- [c.149]

    Для объяснения этого эффекта Будар сделал предположение 265], что дипольный слой водорода изменяет энергию активации адсорбции азота в том же направлении, что и сам азот, но. в меньшей степени, чем последний. Если сплошная пленка волорода оказывает такое же влияние на энергию активации азота, как и пленка азота, покрываюш,ая 20% поверхности, и если величина эффекта, вызывае.мого этими слоями, линейно связана с О, то тогда приведенное выше соотношение становится понятным. [c.162]

    По ияотерме адсорбции азота определить удельную поверхность адсорбента (7 = 77 К, = 16,2-м )  [c.44]

    Размер частиц порошков можно определять микроскопически, методом седиментации и с помощью ситового анализа. Удельную поверхность порошков определяют либо по адсорбции азота на частицах, либо путем фильтрации жидкости через порошок, либо, наконец, путем просасывания через него разреженного или неразреженного воздуха. [c.350]

    Для многих непористых и широкопористых адсорбентов предельно адсорбированное количество азота постоянно и равно 6, 3 молекулы на 100 поверхности, или 10,6 мкмоль1м . Тогда удельную поверхность адсорбента можно приближенно определить по одной точке изотермы, не прибегая к построению полной изотермы адсорбции. В качестве примера студентам предлагается рассчитать удельную поверхность исследуемого сорбента по адсорбции азота из 5%-ной смеси с гелием. Расчет произвести по формуле [c.205]

    Определяют величину удельной поверхности образцов по низкотемпер 1турной адсорбции азота. Строят графики зависимостей 5о силикагеля от pH застудневания золя (по результатам табл. 2), от абсолютной концентрации 5 02 в золе (табл. 3) и температуры застудневания золя (табл. 4). [c.50]

    Измеряют удельную поверхность образцов по низкотемпературной адсорбции азота, наблюдают изменение величины удельной поверхности, связанное с нарапхиванием на поверхности силикагеля углеродного слоя. Полученные данные также вносят в таблицу. [c.105]

    Пространственная решетка кристаллов гидросиликата кальция изменяется в зависимости от содержания воды. Эти кристаллы имеют слоистую структуру, как у монтморнллонитовой глины, и молекулы воды могут проникать в пространство между слоями, расширяя решетку. Данные об аналогичном явлении были получены и для четырехкальциевого гидроалюмината. Представляет интерес то обстоятельство, что удельная поверхность схватившегося цемента, определенная по методу адсорбции водяного пара, в 2—3 раза больше, чем полученная по методу адсорбции азота. Эту разницу следует приписать проникновению молекул воды между слоями решетки или в межкристаллические промежутки, недоступные для азота. Аналогичное явление наблюдается у глинистых минералов. Было установлено, что у каолинита, который обладает нерасширяющейся решеткой, адсорбция азота и водяного пара происходит на одной и той же поверхности. Однако у монтмориллонита, обладающего расширяющейся решеткой, вода проникает в структуру и адсорбируется на внешней поверхности. [c.360]


Смотреть страницы где упоминается термин Поверхность адсорбции азота: [c.302]    [c.287]    [c.211]    [c.436]    [c.57]    [c.113]    [c.116]    [c.185]    [c.223]    [c.57]   
Химия кремнезема Ч.1 (1982) -- [ c.479 ]




ПОИСК







© 2025 chem21.info Реклама на сайте