Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

водой распределение электронов в молекулах и ионах

    Подобное же перераспределение электронных плотностей, не сопровождающееся полным переходом электронов, наблюдается и при окислении и восстановлении органических соединений. Вследствие того, что электроны, образующие связь, смещены к более электроотрицательному атому, в данном примере — атому кислорода, он получает отрицательный заряд. Заряд атома, возникающий после такого распределения электронов, называют степенью окисления. Степень окисления — это кажущийся заряд атома, который возникает при отдаче или присоединении электронов в ионных соединениях или в результате притягивания или оттягивания электронных пар от одного атома к другому в молекулах полярных соединений. При этом условно считается, что молекула состоит только из ионов. Степень окисления может иметь положительное, нулевое и отрицательное значения. Она вычисляется как алгебраическая сумма полярных связей. Степень окисления атомов в ионных соединениях по величине и знаку соответствует заряду иона, а у атомов неполярных молекул (Нг, Ог и др.) равна нулю, так как отсутствует одностороннее оттягивание общих пар электронов. Рассмотрим изменение степени окисления атома углерода при окислении щавелевой кислоты перманганатом калия. Эта реакция проводится при определении перманганатной окисляемости воды по уравнению [c.49]


    ИОН-ДИПОЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ. Молекула воды полярна. Кислородный конец обогащен электронами по сравнению с водородным концом , так как электроотрицательность кислорода больше, чем водорода. Химик отметил бы это неравное распределение электронной плотности, написав символ б + у более положительного конца молекулы и символ б — [c.29]

    При образовании ионной связи атомы одних элементов превращаются в положительно заряженные, а других — в отрицательно заряженные. ионы. Соответственно с этим различают валентности положительную и отрицательную. Однако, удобства ради,представление о значности валентности в химии часто трактуют расширительно. Так, отрицательную валентность условно приписывают вообще тому элементу, в сторону атомов которого смещается связующий электронный дублет. Этот сравнительно более электронофильный элемент с известными допущениями можно рассматривать как акцептор электронов. Элементу же, атомы которого удерживают валентные электроны более слабо, чем его партнер, приписывают положительную валентность и считают донором электронов. Например, состав молекулы воды можно записать так Н Н--О--КН. Этим подчеркивают, что водороду в указанном соединении условно приписана валентность + 1, а кислороду —2. Подобные записи иногда называют структурными формулами. Ими пользуются для наглядного представления о распределении положительных и отрицательных зарядов внутри электронейтральной молекулы. [c.83]

    Эти свойства жидкой воды связаны с необычайностью ее структуры, которая и заключается в наличии водородной связи, образующейся в молекулах воды вследствие существования неподелен-ных электронных пар. Электронные пары расположены на двух орбиталях, лежащих в плоскости, перпендикулярной к плоскости НОН (рис. 1.5). За счет неподеленных пар электронов в каждой молекуле воды могут возникнуть две водородные связи. Еще две связи могут обеспечить два водородных атома. Таким образом, только одна молекула воды в состоянии образовать четыре водородных связи. Благодаря этому результирующее распределение зарядов в молекуле воды напоминает тетраэдр, два угла которого заряжены положительно, а два — отрицательно. Результирующий центр положительных зарядов находится посредине между протонами. Он отделен от результирующего центра отрицательных зарядов, расположенного вблизи атома кислорода с противоположной Т5Т протона стороны. Вследствие этого молекула воды оказывается электрическим диполем с дипольным моментом, равным Кл-м (отсюда и высокая диэлектрическая проницаемость воды, и связанная с ней способность растворять ионные вещества). [c.23]


    Все молекулы воды, образующие небольшие (л 15) кластеры, сильно ориентированы полем иона. Среди ближайших к иону (особенно Ыа+) молекул воды преобладает ориентация, в которой неподеленная электронная пара молекул воды направлена к иону [386, 413]. Впрочем, детальная картина распределения ориентаций молекулы воды по отношению к иону зависит от выбранной модели распределения электростатических зарядов в молекуле [414]. [c.147]

    Растворимость в воде многих неорганических кислот, оснований it солей связана с их ионным характером. Молекулы воды ориентируются в электрическом поле определенным образом, что указывает на их полярность. На одном конце молекулы находится отрицательный заряд, а на другом положительный, образующие вместе диполь. Если бы молекула воды имела линейное строение, поляризация была бы невозможной. Как установлено с помощью физических методов, эта молекула действительно не линейна угол между связями О—Н составляет 105°. Молекула воды поляризована благодаря тому, что кислород, который более электроотрицателен, чем водород, способен оттягивать к себе электроны связей. Смещение электронной плотности вызывает появление частичного отрицательного заряда б — на кислородном конце диполя, компенсирующегося равным ему частичным положительным зарядом, распределенным между двумя водородными атомами на другом конце диполя. При растворении хлористого водорода в воде отрицательно заряженный кислород притягивает протон, образуя ион гидроксония Н3О+  [c.34]

    Как видим, анализ кривых распределения электронной плотности позволил определить строение ионов NO3 и 804 и число молекул воды вокруг них. [c.291]

    Тейлору, настолько слаба, что лишь катионы, имеющиеся в структуре цеолита, образуют с ней разрыхленные полярные связи, подобные связям ионов в водных растворах. Если принять теорию Бернала и Фаулера (см. А. II, -202) о тетраэдрическом распределении электронов вокруг молекулы воды, то способ связи воды в различных цеолитах может быть представлен схемами, приведенными на фиг. 720, на которых пунктирные круги показывают молекулы воды, малые круги — ионы кислорода и большие круги — одно- и многовалентные катионы. Если в натролит ввести ион аммония, замещающий натрий, то его тетраэдрическое строение позволит насытить связи с четырьмя ближайшими иона- [c.668]

    Изменяя распределение плотности электронных облаков ионов и молекул воды, магнитное поле изменяет структуру растворителя, энергии взаимодействия ионов с молекулами воды, являющимися непосредственным окружением ионов (ближнюю гидратацию), и поляризацию молекул в прилегающих к ионам слоях (дальнюю гидратацию), т. е. изменяет структуру раствора в целом [116, 117]. Отсюда следует, что внешнее поле особенно сильно влияет на гидратацию, а последняя в значительной мере определяет состояние границ раздела фаз, кислотно-основное и другие равновесия в водно-дисперсных системах. [c.37]

    Природа и количества различных образующихся молекул, скорости их образования, количества их на единицу поглощенной энергии и другие явления зависят от большого числа разных факторов, к которым относятся тип излучения (например, производится ли бомбардировка электронами или тяжелыми частицами), энергия отдельных частиц, интенсивность и длительность бомбардировки, распределение поглощения энергии в жидкости, отношение объемов жидкой и газовой фаз в реакционном сосуде и наличие или отсутствие следов растворенных веществ, например кислорода. В настоящее время отсутствует способ измерения числа ионных пар (положительный ион плюс электрон), образующихся на единицу количества ионизирующего излучения, поглощенного водой. Обычно предполагается, что около половины поглощенной энергии расходуется на образование молекул воды с возбужденными электронами, другая же половина энергии идет на образование ионных пар. Это соображение основано на предпосылке, что для образования одной ионной пары в жидкой воде требуется такое же количество энергии (т. е. 30—35 зв), как и в воздухе. Поскольку примерно половина этого количества энергии требуется на ионизацию одной молекулы воды, приходится принять, что другая половина расходуется на образование активированных молекул воды. Часть этих активированных молекул инактивируется затем за счет столкновений, другие могут образовать радикалы Н и ОН. Однако весьма вероятно, что, поскольку радикалы, возникшие за счет диссоциации активированной молекулы воды, находятся близко друг от друга, будет немедленно происходить их рекомбинация с образованием воды. Степень участия их в других реакциях неизвестна, но принимается, что она невелика. [c.61]


    Заметное влияние типа излучений на выход разложения воды по энергии, вероятно, зависит от степени разделения возникших Н- и ОН-радикалов, образовавшихся в треке ионизирующего луча, или от аномального распределения Н- и ОН-радикалов [86, 94]. Например, предполагается, что положительные ионы, возникшие по каждому следу а-частицы, протона или дейтона, быстро диссоциируют на Н" и радикал ОН, тогда как электрон, появившийся от первичного процесса, захватывается только на некотором расстоянии от этого пути. Вследствие этого создается избыток ОН-радикалов вдоль центра пути и избыток Н-радикалов в зоне, окружающей этот центр. Это увеличивает вероятность рекомбинации двух гидроксильных радикалов с образованием перекиси водорода и двух Н-атомов в молекулу водорода. При облучении рентгеновскими, у- или -лучами логично предполагать, что ОН- и Н-радикалы образуются в значительно меньшей концентрации и распределены более равномерно, что увеличивает вероятность их рекомбинации с образованием исходной воды. Аллен [96] показал, что потеря энергии быстрыми электронами, проходящими через воду, происходит внезапными толчками, что приводит к образованию скоплений пар ионов вдоль пути этих электронов, что также должно влиять на распределение ОН- и Н-радикалов. У нас очень мало сведений об относительных выходах по энергии в водяном паре по сравнению с выходами в жидкой воде. Однако близость между молекулами воды и наличие водородных связей в жидком состоянии, как можно предполагать, обусловливают значительные различия в механизмах реакций в обеих фазах. [c.62]

    Химическая ионизация. При химической ионизации (ХИ) вещество ионизируется при газофазной ион-молекулярной реакции. Для этого в источник ионов при относительно высоком давлении (0,01-2 мм рт.ст.) вводится газ-реагент (обычно метан, изобутан, аммиак или вода), из которого в результате ионизации под действием электронного удара генерируются ионы. Определяемые молекулы ионизируются непосредственно за счет ряда реакций с газом-реагентом, при которых во время столкновений на молекулы аналита переносится небольшая порция энергии с достаточно узким распределением. Это объясняет, почему ХИ часто называют мягким методом ионизации. Мягкая ионизация приводит к меньшей фрагментации и поэтому к большей интенсивности пиков молекулярных ионов по сравнению с ЭУ. Низкий [c.601]

    Эта теория утверждает, что -орбиты имеют специфическую геометрию и ориентацию в пространстве и что -электроны находятся на орбитах, наиболее удаленных от атомных ядер. Наличие -электронов в комплексах с координационным числом шесть и четыре вызывает искажение ожидаемых октаэдрической и тетраэдрической конфигураций. Искажение возникает потому, что лиганды избегают тех положений вокруг иона металла, в которых находятся й-электроны. Например, в комплексе [Т1(Н20)б] + вокруг иона Ti + имеется шесть молекул воды следовательно, нужно ожидать октаэдрического распределения лигандов. [c.74]

    Для некоторых реакций это действительно так, но для ряда других реакций такое равенство не соблюдается. Для двух реакций перехода протона сечения в 4,5 раза превышают значения, рассчитанные но поляризуемости. Значения указанные для этих двухреакщш, относятся, конечно, только к реакции углеводородных ионов с водой. Этп реакции имеют низкий потенциал появления этот потенциал был единственным, который удалось определить. Однако следует иметь в виду, что ионы DgO" в каждом нз этих случаев участвуют также в реакциях с нейтральными молекулами СзНб и sHg. Из-за широкого распределения электронов по энергиям в нашем ионизирующем пучке редко удавалось зарегистрировать высшие потенциалы появления по изменению наклона кривой появления ионов в случае этих постулированных реакций потенциал появления вторичных ионов соответствовал бы потенциалу ионизации воды, т. е. [c.321]

    Растворимость практически полностью диссоциированного в водных растворах уранилнитрата в некоторых органических растворителях объясняется химическим взаимодействием между молекулами уранилнитрата и экстрагента с образованием неионизиро-ванных комплексов, обладающих псевдоорганическимисвойствами. Это взаимодействие можно наглядно представить, используя описание гидратации уранил-иона в водном растворе, предлол енное Конником и Хугом [20]. Согласно этим авторам, в результате гидратации атом урана окружается кольцом из шести атомов кислорода молекул воды, находящихся в плоскости, перпендикулярной оси линейного иона иОг . В процессе экстракции происходит частичное замещение кислородных атомов воды сначала кислородами треугольного иона ЫОз , а затем донорной группой экстрагента при этом образуется нейтральная молекула, в которой центральная группа уранилнитрата в значительной степени экранирована алкильными группами экстрагента, создающими оболочку органических радикалов. Распределение урана между органической и водной фазами определяется тогда конкуренцией между донорными соединениями за обладание координационными позициями около иона иО . По этому представлению уранил-ион является акцептором электронов, а экстрагент —донором электронов. Донорами почти всегда служат атомы кислорода, которые являются частью функциональной группы или групп органического экстрагента. Трибутилфосфат является сильным донором и может вытеснить всю гидратационную воду диэтиловый эфир не такой сильный донор, как трибутилфосфат, а потому он вытесняет лишь часть воды, связанной с уранил-ионом. Другие экстрагенты, например фосфиноксиды, являющиеся более сильными донорами, чем трибутилфосфат, удерживают уран в органической фазе настолько прочно, что его трудно перевести обратно в водную фазу. Механизм экстракции урана может быть выражен следующими уравнениями  [c.25]

    Из данных спектроскопии ЯМР и N3 следует, что молекулы воды, распределенные в гидратных оболочках противоионов, находятся в сильно иммобилизованном состоянии в обратных мицеллах аэрозоль ОТ - Н О -гептан. После завершения гидратной оболочки подвижность воды усиливается и приближается к подвижности обычной воды. Флуоресцентные зонды пирен (Р) и пиренсульфокислота (ПСК) инкубировали в обратных мицеллах и возбуждали рубиновым импульсным лазером с длиной волны 347,1 нм. С целью исследования динамики движения зонда и тушителей флуоресценции следили за затуханием возбужденного синглетного состояния зонда. В случае ионных тушителей движение оказалось весьма затрудненным при низком содержании воды. Однако тушители типа 0 или СН212 свободно диффундируют в таких системах. Константы скорости тушения флуоресценции меньше для гидрофобного зонда пирена, чем для дифильной ПСК в случае ионных тушителей. Этот факт объясняется меньшей вероятностью столкновения между тушителем и ПСК. Паносекундный импульсный радиолиз дифенила в обратных мицеллах приводит к образованию аниона и триплетного дифенила. Изучен последующий перенос электрона и энергии от этих промежуточных форм к акцепторам, локализованным в разных местах мицеллы. Показано, что заряд донора, доступность акцептора, а также микроокружение акцептора существенно влияют на эффективность этих процессов переноса. [c.354]

    Современные данные, полученные при исследованиях ЯМР и инфракрасных спектров, кинетических исследованиях скоростей реакций и определении констант равновесия для распределения положительных ионов между различными фазами, а также выводы, основанные на изучении поведения других ионов и водородсодержащих ионов в других фазах (например, в кристаллах), приводят к выводу, что ионы Н+ в растворах обычно связаны с несколькими другими молекулами. Эти молекулы группируются вокруг находящегося в центре иона Н+, и его положительный заряд распределяется между ними. Механизм этого явления, по-видимому, заключается в том, что протон деформирует электронные облака на орбиталях окружающих молекул, притягивая их к себе, однако при этом электроны не покидают молекул растворителя. В результате эти молекулы поляризуются, так что со стороны, прилегающей к иону Н+, они становятся более отрицательными, а с противоположной стороны — более положительными, и, таким образом, положительный заряд протона распределяется по большему объему, что снижает плотность заряда (рис. 12.10). Природа таких гидратированных протонов в точности неизвестна и не исключено, что ее никогда так и не удастся достаточно хорошо описать. Возможно, гидратированные протоны постоянно образуются и распадаются, причем каждый раз вокруг протона группируется неодинаковое число молекул растворителя. По этой причине мы будем в дальнейшем условно записывать гидратированный протон как НзО+ или как Н+(водн). Каждый из этих символов указывает, что речь идет не об изолированном протоне, а о продукте его взаимодействия с водой. Запись Н3О+ вовсе не означает, что протон связан только с одной молекулой воды, хотя он действительно может быть прочнее связан с одной молекулой воды, чем с остальными окружающими молекулами. Принято, что [Н3О+] = [Н+] и означает концентрацию акватированных конов водорода в молях на литр. Принято также считать, что теплота образования, свободная энергия образования и энтропия образования Н+(водн) равны нулю, как это н указано в табл. 12.1. [c.368]

    ПОЛОНИЯ через воду выделяется энергия 5,2 Мзв в цилиндре длиной 32 мк и диаметром около 100 А. Такая концентрация энергии (которой соответствует около 150 ООО первично ионизованных и 500 ООО возбужденных молекул в треке одной а-частицы) немедленно вызывает противодействие со стороны диффузионных процессов. Следует отметить, что распределение положительных и отрицательных ионов уже в самом начале неравномерно (если ионы в жидкости имеют конечное время жизни, что, вопреки теоретическим соображениям Бертона и Маги, следует признать, учитывая явления электропроводности, очень вероятным). Положительные ионы, возникающие в результате отрыва электрона, образуются в месте, где произошел акт первичного взаимодействия ионизирующей частицы с молекулой. В противоположность этому подавляющее большинство отрицательных ионов образуется во время прилипания к нейтральным молекулам электронов, замедленных до тепловых скоростей, т. е. больщей частью вдали от оси трека. Первичное разделение ионов разных знаков тем больше, чем больше удельные потери энергии. [c.210]

    Авторы считают, что им удалось на основе прямого анализа изотопного распределения ионов железа в твердой фазе по двум разным валентным состояниям установить наличие достаточно быстрого электронного обмена во льду между Fe2+ и Fe3+. Применение новой методики позволило оценить константы скорости реакции электронного обмена непосредственно во льду вплоть до весьма низких температур. Среднее расстояние между ионами железа при исследованных концентрациях более чем в 10 раз превышает. расстояние между соседними молекулами воды, что исключает непосредственный контакт между ионами, если предположить равномерное распределение их по образцу. Авторы считают, что полученные значения констант скоростей реакции не обусловлены диффузией ионов во льду, а связаны с переносом электронов в замороженных растворах, в котором, вероятно, участвуют молекулы среды. С этой точки зрения трудно понять наличие сильной (Е= = 39,4 кДж/моль) температурной зависимости скорости электронного обмена гари температурах выше 159 К, которая свидетельствует против заметной роли механизма дальнего тувнельного перехода электронов от ионов Fe2+ к ионам Fes+ [330, 331]. [c.176]

    Бендер [60] показал, что в процессе гидролиза по механизму Алс2 комплекс, образованный сложным эфиром, водой и водородным ионом, представляет собой устойчивую молекулу, а пе просто переходное состояние реакции. Для этого Бендер воспользовался водой, обогаш енной изотопом кислорода 0, так же как он это сделал при установлении механизма Вас2 в щелочной среде. Бендер исследовал гидролиз этилового эфира бензойной кислоты в воде, добавляя в качестве катализатора хлорную кислоту. При этом он установил, что скорость обмена кислорода между сложным эфиром и водой, определенная но содержанию изотопа 0 в ненрореагировавшем сложном эфире на различных глубинах гидролиза, составляет значительную долю (около 20 ii) скорости гидролиза. Это означает, что продолжительность жизни промежуточного комплекса достаточно велика, благодаря чему возможно перемещение протонов, необходимое для того, чтобы сделать вполне эквивалентными не-алкилированные атомы кислорода. Это положение можно проиллюстрировать, как и раньше, на модели реакции, включающей присоединение, хотя ясно, что эта модель дает лишь ограниченное представление о происходящих изменениях в распределении электронов. [c.956]

    Бернал и Фаулер [137] в предложенной ими теории строения воды и ионных растворов постулировали тетраэдрическое распределение электронной плотности молекулы воды. Дипольный момент последней, как было доказано в ходе позднейших исследований [138—141], в основном, определяется протяженностью 5р -ор-биталей, занимаемых неподеленными электронами атома кислорода из полного момента 1.84/Столько 0.15приходится на связи 0-Н. [c.25]

    Чтобы применить теорию поля лигандов к иону Ре +, имею-П1,ему пять З -электронов, а также для того, чтобы рассмотреть ион Ре + с щестью такими электронами, мы должны исходить из того, что окончательное распределение электронов должно отвечать второму закону термодинамики, т. е. распределение электронов должно отвечать наибольшей устойчивости и самой низкой энергии. Степень КП-расщепления зависит от ряда факторов и среди прочих —от природы лиганда. Больший отрицательный заряд и меньшие размеры лиганда способствуют большему расщеплению. Другим фактором служит степень поляризации лиганда. Одна электронная пара дает большее расщепление, чем две или большее число свободных пар, так как эта одна пара как бы более сфокусирована на какой-то определенной орбитали. Так, молекула МНз дает большее расщепление, чем молекула воды. Но самое большое расщепление дают ненасыщенные молекулы и группы с л-орбиталями, таки., как СО, СЫ", СНг = СН2, что обусловлено образованием л-, вязей с нонами металла. Важное значение имеет степень окисления самого металла Со + дает большее расщепление, чем Со +. [c.271]

    В чем же причина этого явления Вспомним, что галоидово-дороды (газы) кипят при значительно низшей температуре, чем вода. При сопоставлении воды и спирта между ними легко обнаруживается аналогия. Так, например, молекула воды и молекула спирта содержат гидроксильную группу. Связь между кислородом и водородом в молекуле спирта, так же как и в молекуле воды, частично ионная. Напомним (стр. 65), что в молекуле воды связи между атомами водорода и кислорода направлены так, что образуют между собой угол, в вершине которого находится кислород. Вследствие этого распределение электрических зарядов в молекуле воды несимметрично, и в ней возникает довольно высокий дипольный момент (fi = l,85) между кислородом и водородом устанавливается частично ионная связь возникаюш,ие на кислр-роде и водороде частичные отрицательные и положительные заряды по величине приблизительно равны одной трети заряда электрона  [c.138]

    Отмечается, что для ионов, имеющих электронную структуру благородных газов, коэффициент распределения возрастает с повышением ионизационного потенциала [65]. Определена растворимость в диэтиловом эфире дигидрата и гексагидрата нитрата уранила [66, 67] и безводного нитрата ураннла [68]. Показано, что нитрат уранила в эфирных растворах, насыщенных водой, находится в виде тетрагидрата [69]. На основании результатов изучения взаимной растворимости в системе нитрат уранила — вода — органический растворитель сделан вывод о том, что взаимная растворимость в простых эфирах последовательно надает по мере уменьшения основности растворителя, например, в ряду диэтиловый эфир н. дибутиловый эфирен, дигексиловый эфир Р, Р -дихлордиэтиловый эфир. Обсужден механизм растворимости нитрата уранила в органических растворителях других классов и влияние протяженности и разветв-леппости цепи углеродных атомов в молеку ле растворителя на растворимость сольватов U02(N0з)2 28 где 8 — молекула растворителя [70]. [c.232]

    Эта реакция необычна. Как известно (стр. 256), гидролиз является реакцией ионов воды. В большинстве случаев при гидролизе хлоридов хлор высвобождается из молекулы в виде отрицательного иона С1 с полным октетом электронов, а остальная часть молекулы реагирует с ионами ОН воды (см. пример на стр. 336). В данном случае можно допустить, что атом хлора высвобождается из молекулы в виде положительного иона С1+, имеющего только шесть электронов, и этот ион реагирует с ионом ОН". Ион № реагирует с тремя ионами Н+, образующимися из воды. [Вышеизложенное не следует понимать в том смысле, что N013 является ионным соединением, состоящим из ионов С1+ и кинетически существующими в растворе независимо. Речь идет только о модели распределения электронов в активированном комплексе (см. стр. 281) в тот момент, когда исходные молекулы разрываются, прежде чем образуются конечные продукты.] [c.409]

    Теоретических расчетов этого процесса также очень мало. Здесь следует отметить давнюю работу [149] по диссоциации молекулы воды в борновском приближении, а также последние расчеты [150] диссоциации Аюлекулы водорода электронным ударом, выполненные в различных приближениях. Результаты этого расчета посредственно согласуются с экспериментальными данными [151]. В [152] проведен расчет углового распределения продуктов диссоциации иона Щ при электронном ударе в борновском приближении. Сечения диссоциации, Oj электронным ударом измерены экспериментально в диапазоне 10—500 эв [153]. [c.67]

    При дегидратации спиртов ион карбония образуется в результате отщепления молекулы воды от протонированного спирта ROH2, т. е. вследствие разрыва связи углерод — кислород. В исходном соединении положительный заряд в основном находится на кислороде, а в конечном продукте— на углероде. В переходном состоянии связь С—О должна быть частично разрушена, причем кислород частично оттягивает на себя электронную пару от углерода. Положительный заряд, который раньше был на кислороде, теперь уже распределен между кислородом н углеродом. Углерод уже частично приобрел положительный заряд, который он имеет в конечном карбониевом ионе. [c.165]

    Для ряда моиозамещениых бензолов, адсорбированных на кремневой кислоте из раствора в циклогексане, полосы поглощения были расширены и несколько смещены в коротковолновую область (пшсохромный сдвиг) [13]. Эти сдвиги соответствовали приблизительно 1% от полной энергии перехода и аналогичны сдвигу, наблюдаемому для спектра бензола, адсорбированного из газовой фазы на прозрачном силикагеле [44]. Уширение спектральных полос при адсорбции можно интерпретировать как результат статистического распределения энергетических состояний молекулы в поле полярно" адсорбента. Спектральные сдвиги могут быть следствием образования водородной связи или изменения полярности среды. Так, например, электронный спектр анилина в воде но сравнению со спектром в циклогексане обнаруживает сдвиг в коротковолновую область примерно на 1000 м- [45]. Это можно объяснить образованием водородной связи между водой, действующей как донор протонов, и неподеленными электронами МНг-группы. Образование водородной связи уменьшает взаимодействие между этими двумя /7г-электронами и кольцом и поэтому сдвигает полосу поглощения в коротковолновую область. Повышение кислотности среды при адсорбции анилина на кремневой кислоте приводит к дальнейшему сдвигу в коротковолновую область, обусловленному увеличением протонодонорной способности кремневой кислоты по отношению к протонодонорной способности воды. Предельным случаем для анилина было бы растворение его в кислоте, при котором основной формой, поглощающей свет, является ион анилина, а не молекула анилина. Первоначально неподеленные электроны прочно локализованы в связи N—Н и, следовательно, неспособны к взаи модействию с кольцом. В этом случае спектр возвращается К спек тру бензола. [c.27]

    Далее Берч и Хэбгуд [7] исследовали инфракрасные спектры молекул НгО и ОгО, адсорбированных цеолитами NaX, LiX, и КХ при заполнении, в среднем меньшем 0,1 молекулы воды на полость. Для получения однородного распределения молекул воды по полостям це0лита адсорбция производилась при 110° С. При этих заполнениях в спектре одновременно наблюдались узкие полосы поглощения колебаний свободных гидроксильных група 3720 м- для LiX, 3690 см для NaX и 3648 см для КХ и широкие полосы 3400 и 3200 см гидроксильных групп, связанных водородной связью (рис. 156). Одновременное проявление в спектре узкой полосы поглощения валентных колебаний гидроксильных групп, чувствительной к типу катиона, и широких полос поглощения гидроксильных групп, связанных водородной связью, объяснялось взаимодействием свободной электронной пары кислорода молекул воды с обменным катионом, участием одной гидроксильной группы во взаимодействии с ионом кислорода остова цеолита и свободным расположением другой гидроксильной группы. [c.383]

    Быстрые тяжелые заряженные частищ, как, например, а-частицы, дейтоны и протоны, редко испытывают прямые столкновения с ядрами, а только ионизируют молекулы, с которыми они сталкиваются . Электроны, выбиваемые любыми заряженными частицами при ионизации, обычно проходят расстояние в несколько сот молекулярных диаметров от места действия первичных частиц. Тяжелые заряженные частицы образуют сравнительно большое число ионов на единицу длины пути. Так, быстрый дейтон ионизирует каждую пятую молекулу вдоль своего пути в воде. Таким образом, в случае облучения тяжелыми заряженными частицами часть первичных продуктов реакции сосредоточена в ограниченном объеме, т. е. распределение этих продуктов является неравномерным. [c.63]

    В настоящем обсуждении этот предмет, известный под названием радиационной химии, подробно рассматриваться не будет. В основном внимание будет сосредоточено на обладающих большой энергией и обычно радиоактивных атомах, которые возникают при ядерных реакциях, протекающих с изменением заряда ядра. Несмотря на то, что эти частицы имеют большую энергию, они в большинстве случаев являются в основном не ионизирующими, так как благодаря своей большой массе они имеют небольшую скорость. Мы будем рассматривать их как частицы, которые при столкновениях передают свою энергию другим атомам, ионам и молекулам в системе и достигают в конце концов некоторого стабильного или метастабильного состояния. Наша задача заключается в том, чтобы предсказывать и объяснять эти конечные состояния. Эта точка зрения основывается на принципе, который нуждается в дальнейшем пояснении, а именно, что вероятность диссоциации любой определенной молекулы в результате ионизации вообще очень мала. Предположим, например, что процесс поглощения рентгеновских лучей каким-то образом обусловливал бы радиоактивность атома кислорода в молекуле воды каждый раз, когда происходит выбивание электрона. В этом случае сформулированный выше принцип означает, что выделяющийся газообразный кислород не содержал бы почти весь радиоактивный кислород, а фактически мог бы содержать лишь немногим больше, чем можно ожидать при равномерном распределении его среди всех молекул воды, т. е. точно так же, как если бы процессы ионизациии появления радиоактивности были бынезависимы. [c.223]

    Наиболее достоверное объяснение описанного явления дано Ф. Дейнтоном [47]. По его мнению, атомы Н имеют более диффузное начальное распределение, чем радикалы ОН, причем в D2O различие в распределении несколько больше, чем в Н2О. Это обусловлено следующими обстоятельствами. Некоторая часть термалнзованных электронов оказывается вне зоны действия кулоновских полей материнских ионов и захватывается молекулами воды. Это приводит к образованию сольватированных электронов при разложении которых возникают атомы Н. Следовательно атомы Н образуются на некотором расстоянии от ионов Н2О+ (или радикалов ОН). Гследствие разницы во времени диэлектрической [c.120]


Смотреть страницы где упоминается термин водой распределение электронов в молекулах и ионах: [c.442]    [c.317]    [c.265]    [c.292]    [c.270]    [c.51]    [c.23]    [c.5]    [c.257]    [c.534]    [c.534]    [c.59]    [c.318]    [c.314]    [c.383]    [c.406]    [c.443]   
Перекись водорода (1958) -- [ c.315 ]




ПОИСК





Смотрите так же термины и статьи:

Ионы в воде

Молекула ионная

Распределение на ионитах

Электронная распределение

Электронное распределение в молекула

Электронов распределение



© 2025 chem21.info Реклама на сайте