Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Устойчивость неравновесных состояний

    Перейдем от теории устойчивости равновесных состояний к значительно более трудной проблеме устойчивости неравновесных состояний. С кинетической точки зрения эта проблема очень близка к той, что рассматривалась в разд. 5.3, — в линейной теории устойчивости стационарных состояний по отношению к малым возмущениям необходимо, чтобы для каждой нормальной моды выполнялось неравенство (5.25). [c.69]


    Метод баланса энтропии (гл. 5) нельзя без модификаций применить к проблеме устойчивости неравновесных состояний (ни стационарных, ни зависящих от времени). Действительно, при произвольном отклонении от термодинамического равновесия мы уже не можем разделить уравнение баланса энтропии (5.1) на два  [c.71]

    Устойчивость неравновесного состояния в общем случае зависит от величины и типа отклонения от равновесного распределения, возникающего в процессе протекания химической реакции, а также характера последующих процессов передачи энергии от числа и эффективности столкновений, приводящих к равновесному состоянию, и от взаимодействия этих двух факторов. Рассмотрим некоторые возможные отклонения от термодинамического равновесия и влияние их на значения экспериментально измеряемых температур. [c.28]

    Биопотенциалы можно рассматривать как одно из проявлений неравновесности открытой динамической системы, находящейся в определенном стационарном состоянии. Основное значение в возникновении биоэлектрических потенциалов имеют потенциалы, обусловленные неравномерным распределением ионов. Устойчивое неравновесное состояние поддерживается за счет протекающих в клетке процессов обмена веществ. Нарушение нормального течения метаболизма ведет к утрате клеткой жизнеспособности и к исчезновению потенциала покоя. Вследствие сложности процессов, создающих и поддерживающих потенциал покоя клеток, остаются невыясненными роль окислительно-восстановительных процессов и превращение богатых энергией фосфатных связей в активном избирательном транспорте внутриклеточных ионов. Пока все еще неизвестна природа механизмов, обусловливающих избирательное накопление ионов. [c.286]

    Устойчивость неравновесных состояний. Устойчивость неравновесного состояния зависит, согласно Шулеру, от 1) величины и типа отклонения от равновесного распределения, возникающего в процессе протекания химической реакции, а также характера последующих процессов передачи )нергии, 2) числа и эффективности столкновений, дающих равновесное состояние и 3) взаимодействия этих двух факторов. [c.145]

    Для выявления механизма мембранного переноса и целенаправленного синтеза мембран необходимо установить возможные состояния мембранной системы и их взаимные переходы при различных значениях управляющего параметра а. В качестве управляющего может быть использован любой параметр, вызывающий возмущение в системе, отклонение ее от исходного равновесного или устойчивого стационарного состояния. Поскольку основным неравновесным процессом являются химические реакции, естественно в качестве управляющего параметра использовать величины, влияющие на состав реагентов в каждой точке мембраны. Обычно используют концентрации переносимого компонента на границах мембраны в газовой фазе (С ) или (С/)", изменение которых влияет на приток или отток реагентов и вызывает возмущение как в распределенной системе в целом, так и в локальной области мембраны. [c.30]


    Промышленные катализаторы, как правило, представляют собой системы, по многим параметрам далекие от термодинамического равновесия. Это обусловлено развитой поверхностью и наличием микроискажений решетки кристаллов. При низких температурах неравновесное состояние высокодисперсной структуры может сохраняться весьма длительное время. С повышением температуры увеличивается подвижность элементов структуры твердого тела, и система стремится перейти в более устойчивое состояние. Поэтому практически все промышленные катализаторы в процессе эксплуатации (особенно на стадии регенерации) постепенно претерпевают структурные изменения. В большинстве случаев уменьшается удельная поверхность, происходит перераспределение объема пор по радиусам, и чаще всего размер пор возрастает, общая пористость катализаторов уменьшается. Необходимо отметить, что для сложных катализаторов кроме изменения структуры в объеме гранул возможно изменение соотношения площадей поверхности (дисперсности) различных фаз [1]. [c.53]

    Здесь необходимо учитывать и возможность возникновения в нефтяных системах диссипативных структур. Диссипативные структуры обозначают возникновение локального упорядоченного состояния в открытых системах при большом отклонении от равновесия. Они связаны с понятиями локального термодинамического равновесия и устойчивости неравновесной макроскопической системы. Рост диссипации со временем может обеспечить значительную устойчивость неравновесной системы. В это же время, очевидно, система становится более упорядоченной и симметричной. [c.188]

    Если система еще не достигла равновесия, она находится в неравновесном состоянии, характеризующемся наличием в системе фади-ентов некоторых параметров и поэтому потоков вещества и/или энергии. Рассмотрением состояния таких систем занимается термодинамика необратимых (неравновесных) процессов. При этом ее основной задачей обычно является отыскание одиночных или множественных локальных стационарных состояний, а также анализ их устойчивости. В гл. 17 и 18 показано, что в связи с возможной неустойчивостью стационарных состояний иногда конечным результатом эволюции открытой системы, находящейся вдали от термодинамического равновесия, может быть образование особого рода диссипативных структур. В качестве наиболее высокоорганизованных объектов последнего рода можно рассматривать живые организмы. [c.290]

    В более общем случае, в том числе в гетерогенных системах, проявление неравновесности устойчивого стационарного состояния катализатора может осуществляться также в виде  [c.381]

    Избыточный запас внутренней энергии по сравнению с соответствующим веществом в кристаллическом состоянии. Стекла получают путем переохлаждения расплава, и поэтому они являются системами, находящимися в метастабильном неравновесном состоянии. Однако благодаря чрезвычайно высокой вязкости, затрудняющей внутреннюю диффузию, стекла в метастабильном состоянии могут существовать неопределенно долго без признаков перехода в устойчивое, кристаллическое состояние. Но вследствие избыточного запаса внутренней энергии кристаллизация стеклообразного вещества сопровождается выделением тепла и является экзотермическим процессом. [c.189]

    Поскольку коллоидные системы, обладающие большой удельной поверхностью и большой свободной энергией, являются принципиально неравновесными системами, к ним неприложимо известное правило фаз. Такие системы, очевидно, всегда будут стремиться к равновесному состоянию, отвечающему разделению системы на две сплошные фазы с минимальной межфазной поверхностью, хотя это равновесие практически может никогда и не наступить. Термодинамическое толкование причин устойчивости или неустойчивости коллоидных систем чрезвычайно просто. Однако, как и всякая термодинамическая трактовка, это объяснение формально, т. е. она не раскрывает сущности свойства агрегативной неустойчивости. Кроме того, термодинамика не устанавливает связи между свободной энергией системы и тем, как долго система может пребывать в неравновесном состоянии. Поэтому более полным в данном случае является объяснение агрегативной неустойчивости или устойчивости коллоидных систем с позиций физической кинетики.  [c.19]

    ПРОБЛЕМЫ УСТОЙЧИВОСТИ И УПОРЯДОЧЕНИЯ В РАВНОВЕСНЫХ И НЕРАВНОВЕСНЫХ СОСТОЯНИЯХ [c.233]

    Таким образом, диффузионно-электрическое поле частиц, находящихся в неравновесном состоянии, проявляет себя в качестве стабилизирующего фактора так же, как и равновесный ДЭС. Это дало основание ввести представление о неравновесных поверхностных силах в учение об устойчивости дисперсных систем. [c.282]

    Истинное состояние равновесия наиболее устойчиво и всякое отклонение от него требует затраты работы внешних сил. Это значит, что в равновесном состоянии при постоянном давлении запас свободной энергии О системы меньше, чем во всяком другом (неравновесном) состоянии. Если, например, в системе На (г) -+- 1а (г) ч= 2Н1 (г), находящейся в равновесии, свободная энергия имеет значение, отмеченное ординатой в точке С (рис. [c.23]


    В дальнейших приложениях (2.69) вектор а будет барицентрической скоростью V или ее приращением 6у. Как было указано выше, величины второго порядка, вычисленные в этом разделе, играют существенную роль в теории устойчивости равновесных и неравновесных состояний. [c.41]

    Метод Гиббса хорошо приложим к большинству задач на устойчивость, возникающих в теории равновесия, однако он совершенно не может служить отправным пунктом для изучения устойчивости в неравновесных условиях, например устойчивости стационарных состояний (гл. 3). Это связано с тем, что, как правило, граничные условия, используемые в таких задачах, несовместимы с минимальными свойствами термодинамических потенциалов. В гл. 5 мы изложим более общий подход к проблеме устойчивости равновесного состояния, справедливый для всех типов граничных условий, совместимых с сохранением равновесия в гл. 6 эта теория будет обобщена на неравновесные случаи. [c.55]

    УСЛОВИЯ ТЕРМОДИНАМИЧЕСКОЙ И ГИДРОДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ для НЕРАВНОВЕСНЫХ СОСТОЯНИЙ [c.69]

    Для начала введем точное определение устойчивости, которое было бы справедливо при достаточно общих условиях, включая как равновесные, так и неравновесные состояния. [c.69]

    КОНКРЕТИЗАЦИЯ УСЛОВИЙ УСТОЙЧИВОСТИ для НЕРАВНОВЕСНЫХ СОСТОЯНИЙ [c.80]

    УСЛОВИЯ УСТОЙЧИВОСТИ для НЕРАВНОВЕСНЫХ СОСТОЯНИЙ 81 [c.81]

    УСЛОВИЯ устойчивости для неравновесных состоянии 85 [c.85]

    УСЛОВИЯ УСТОЙЧИВОСТИ для НЕРАВНОВЕСНЫХ СОСТОЯНИИ 87 [c.87]

    УСЛОВИЯ УСТОЙЧИВОСТИ для НЕРАВНОВЕСНЫХ состоянии [c.95]

    Полученные условия устойчивости те же, что и раньше [см. (5.18)], так как коэффициент Г" в добавочном члене — величина строго положительная. Тем не менее (7.79) содержит дополнительную информацию. Например, можно сделать вывод, что в системе, находящейся в термодинамическом равновесии, в состоянии покоя не может возникнуть самопроизвольная внутренняя конвекция. Это, конечно, специфическое свойство равновесного состояния. В гл. 11 будет показано, что возникновение свободной конвекции становится возможным, начиная со стационарных неравновесных состояний даже в линейной области (задача Бенара). [c.95]

    УСЛОВИЯ устойчивости для неравновесных состояний [c.97]

    Таким же образом, из критерия эволюции (9.14) можно вывести и полную теорию устойчивости неравновесных стационарных состояний по отнощению к малым возмущениям. Этот метод дает те же результаты, которые уже были получены в гл. 7. Поэтому мы не будем рассматривать его более подробно. [c.116]

    Прежде чем переходить к проблеме устойчивости неравновесных состояний, полезно напомнить хорои о известную теорию устойчивости термодинамического равновесия. Первоначальная теория была создана Гиббсом [51], позднее она была усовершен- [c.54]

    Давая теоретическое обоснование экспериментальному материалу по митогенетическому излучению, А. Г. Гурвич приходит к необходимости допустить существование высоколабильных неравновесных молекулярных анса.мблей, что соответствует концепции Бауэра об устойчиво неравновесных состояниях [Бауэр, 1935]. [c.17]

    Агрегативная неустойчивость является термодинамической характеристикой дисперсной системы, и она не может ответить на вопрос, как долго система может пребывать в неравновесном состоянии. Поэтому при исследовании процесса формирования отложений более существенным является другая характеристика дисперсного состояния нефти - ее кинетическая устойчивость, т.е. способность сохранять во времени равномерное распределение частиц по всему объему. Это свойство нефти, обусловленное нахождением системы в гравитационном поле Земли, достаточно просто может бьггь охарактеризовано численно, в частности, путем седиментационного анализа. [c.129]

    Как правило, большинство нефтяных дисперсных систем существуют в обычных условиях в неравновесных состояниях. Это приводит к проявлению многочисленных локальных коллоидно-химических превращений в структуре нефтяной дисперсной системы, которые в свою очередь отражаются на макросвойствах системы, например на седиментационной устойчивости, т.е. склонности к расслоению системы, ее вязко-стно-структурных характеристиках и т.д. Важнейшим проявлением макросвойств в нефтяных дисперсных системах являются фазовые переходы, спонтанно происходящие в них в различных условиях существования. Любая нефтяная дисперсная система отличается присухцей ее пространствеьшой внутренней организацией, которая претерпевает непрерывные превращения во времени с участием структурных элементов систем, Общепринятое понятие энтропии системы, яв уяющесся мерой упорядоченности структуры, в данном случае практически не применимо, вследствие чрезвычайной сложности нефтяной системы. В этой связи в нефтяных дисперсных системах фиксируются некоторые характеристические области вблизи состояний равновесия, где система находится в кризисном состоянии, которые проявляются в системе при изменении термобарических условий. В нефтяной дисперсной системе может существовать несколько таких областей. В каждой переходной области система проявляет характерные свойства, отличается наивысшей восприимчивостью к тем или иным воздействиям. [c.174]

    Принципиально важно, что теория неравновесной термодинамики позволяет ответить и на вопрос оЬ устойчивости неравновесных стационарных состояний к внешним возмущениям и самопроизвольным флуктуациям в системе, а также дает возможность и(хледовать эту устойчивость путем изучения изменения скорости производства энтропии при выводе системы из стационарного состояния. [c.339]

    Распространение идей термодинамики на неравновесные динамические системы связано, кроме решения задач о нахождении возможных стационарных состояний, с решением основной проблемы можно ли, зная особенности кинетического поведения системы реакций, из термодинамических соображений предсказать устойчивость стационарного состояния или, наоборот, возможность самопроизвольного перехода в другой стационарный режим при небольших возмущениях, или же найти условия устаноа1ения устойчивого колебательного режима Особенно важным здесь является то обстоятельство, что термодинамический подход позволяет дать ответы на эти и некоторые другие вопросы даже в условиях ограниченных или далеко не полных знаний относительно реальной кинетической схемы анализируемого динамического процесса. [c.349]

    Для катионов с недостроенной -о(5олочкой характерно образование комплексов двух типов. Одни из них, а именно двухзарядные катионы элементов четвертого периода, образуют обычные так называе.мые лабильные комплексы, у которых равновесие между частицами в растворе устанавливается очень быстро, как и у рассмотренных выше комплексов катионов с оболочкой типа инертного газа. Трехзарядные катионы платиновых металлов, хрома и кобальта часто образуют стабильные комплексы. Стабильность в данном случае — это не термодинамическая устойчивость, а кинетическая инертность, вследствие чего находящиеся в растворе комплексы сущестиуют в неравновесном состоянии. Истинное равновесие устанавливается нередко очень медленно, в течение нескольких суток или месяцев. Поэтому констангы устойчивости комплексов этой группы металлов определены только для небольшого числа соединений, что затрудняет выяснение закономерностей устойчивости. В дальнейшем будут рассмотрены только комплексы элементов четвертого периода, а именно комплексы катионов марганца, железа, кобальта, никеля, меди и цинка. [c.249]

    Истинное состояние равновесия наиболее устойчиво, и всякое отклонение от него требует затраты работы внешних сил. Это значит, что в равновесном состоянии при постоянном давлении запас свободной энергии О системы меньше, чем во всяком другом (неравновесном) состоянии. Если, например, в системе Нг(г)+12(г)=рь ч= 2Н1(г), находящейся в равновесии, свободная энергия имеет значение, отмеченное ординатой в точке С (рис. 3), то для всякого отклонения состава смеси исходных и конечных веществ от равновесного вправо или влево от точки С доллсна быть затрачена работа поэтому свободная энергия должна возрастать как с увеличением парциального давления (концентрации) Н1, так и с увеличением парциальных давлений (концентраций) Н2 и Ь. Из этого следует, что при химическом равновески (истема газов Н2, [c.27]


Смотреть страницы где упоминается термин Устойчивость неравновесных состояний: [c.293]    [c.112]    [c.148]    [c.358]    [c.53]    [c.568]    [c.68]    [c.156]   
Смотреть главы в:

Процессы горения -> Устойчивость неравновесных состояний




ПОИСК





Смотрите так же термины и статьи:

Неравновесный ЯЭО

Состояние устойчивое



© 2025 chem21.info Реклама на сайте