Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые свойства равновесного состояния

    Пропуская элект]жческий ток через введенный в клетку электрод, можно деполяризовать мембрану аксоиа в каком-то одном участке (рис. 18-20). Если сила тока мала,-деполяризация будет подпороговой натриевые каналы останутся закрытыми и потенциал действия не возникнет. Установится равновесное состояние, при котором ток, протекающий через микроэлектрод внутрь клетки, сбалансирован током, текущим наружу через мембрану. Часть тока будет выходить вблизи электрода, а часть, прежде чем выйти из клетки, пройдет некоторое расстояние внутри аксона в том или другом иаправлении. Сила тока, проходящего по какому-либо из этих путей, будет зависеть от их сопротивления. Так как цитоплазма аксоиа оказывает некоторое сопротивление току, сила тока будет наибольшей вблизи микроэлектрода н наименьшей вдали от него. При таком распределении тока сдвиг мембранного потеициала уменьшается экспоненциально с увеличением расстояния от источника возмущения. Такого рода пассивное распространение электрического сигнала вдоль нервного волокна-без какого-либо усиления, обусловленного открытием потенциал-зависимых каналов,-аналогично распространению сигнала по телеграфному кабелю, лежащему на дне моря. По мере прохождения тока по осевому проводнику (цитоплазме) происходит некоторая утечка его через слой изоляции (мембрану) в окружающую среду, так что сигнал постепенно затухает. Поэтому элект жческие свойства, от которых зависит пассивное распространение сигналов, часто называют кабельными свойствами аксона. [c.88]


    Из приведенных примеров видно, что переход системы из одного равновесного состояния в другое проходит через промежуточные неравновесные состояния. Такой процесс называют неравновесным процессом. Степень неравновесности промежуточных состояний системы в ходе некоторого процесса, а тем самым и степень неравновесности процесса в целом, могут быть охарактеризованы максимальным в пределах системы перепадом того свойства, которое изменяется в рассматриваемом процессе. Так, максимальная неравновесность при нагревании сферического тела наблюдается в начальный момент нагревания и равна Т — Т . В случае растворения КС1 при повышении температуры максимальная неравновесность может быть охарактеризована разностью растворимостей хлористого калия при начальной и конечной температурах j — С , поскольку в начале процесса в верхней части раствора концентрация еще равна С , а в нижней, вблизи поверхности растворяющихся кристаллов, С . [c.180]

    Если в некоторой системе достигается состояние термодинамического равновесия (АС = 0) (см. также гл. 9), это значит, что скорости прямой и обратной реакций выравниваются, и мы говорим об установлении химического равновесия. Признаком такого состояния системы служит постоянство всех ее свойств во времени, обусловленное постоянством концентраций всех ее компонентов. Однако этот признак недостаточен. Как указывалось в начале главы ( 1), многие системы, далекие от состояния равновесия, не изменяются во времени из-за медленности реакций, которые могли бы перевести систему в равновесное состояние. Таким образом, необходимым условием является также протекание реакций. Химическое равновесие — динамическое, определяемое равенством скоростей всех реакций, что и обеспечивает неизменность состава реакционной смеси. [c.207]

    Получим теперь феноменологические уравнения вида (5.193) в соответствии с выражением (5.205). Ранее было сказано, что каждый поток является линейной функцией всех термодинамических сил. Однако потоки и термодинамические силы, входящие в выражение (5.205) для диссипативной функции, обладают различными тензорными свойствами. Некоторые являются скалярами, другие — векторами, а третьи представляют собой тензоры второго ранга. Это значит, что при преобразованиях системы координат их компоненты преобразуются различным образом. В результате оказывается, что при наличии симметрии материальной среды компоненты потоков будут зависеть не от всех компонент термодинамических сил. Это обстоятельство называют принципом симметрии Кюри. Самой распространенной и простой средой является изотропная среда, т. е. среда, свойства которой в равновесном состоянии одинаковы во всех направлениях. Для такой среды потоки и термодинамические силы различной тензорной размерности не могут быть связаны друг с другом. Поэтому векторные потоки должны линейно выражаться через векторные термодинамические силы, тензорные потоки — через тензорные термодинамические силы, а скалярные потоки — через скалярные термодинамические силы. Сказанное позволяет написать следующие линейные феноменологические уравнения  [c.88]


    НЕКОТОРЫЕ свойства РАВНОВЕСНОГО СОСТОЯНИЯ [c.81]

    Еще в середине XIX столетия Максвелл и Больцман, анализируя свойства газов и характер движения молекул газа, пришли к выводу, что, хотя эти молекулы имеют самые различные скорости, соотношение между числом молекул и их скоростями не произвольно. Частые столкновения приводят к тому, что устанавливается некоторое вероятностное равновесное состояние, при котором молекулы газа с различными скоростями распределены в соответствии с определенным числовым соотношением. Это соотношение надо понимать статистически, так как в результате столкновений скорость каждой молекулы практически непрерывно изменяется. Можно тем не менее вычислить, какой процент всех молекул будет иметь скорость, например, 100, 101, 102 м/с и т. д. Мы приходим к так называемому распределению скоростей по Максвеллу — Больцману, которое позволяет установить, какой процент молекул в среднем движется с теми или иными скоро- [c.78]

    Свойство, выраженное равенством (67), дает возможность определить новую функцию состояния системы. Эта функция, которая называется энтропией и является крайне важной в термодинамике, определяется следующим путем. Выбираем произвольно некоторое равновесное состояние О нашей системы и называем его стандартным состоянием. Пусть А — некоторое другое равновесное состояние рассмотрим интеграл [c.57]

    Понятие равновесия играет исключительную роль в химической кинетике, поскольку оно определяет предел возможных изменений состояний реагирующей системы и зависит только от начальных условий и свойств самой системы, а не от условий проведения процесса. Несколько упрощая существо дела, термодинамику можно определить как пауку о равновесии или как учение о направленности процесса, в то время как кинетика — наука о его скорости. Более строго термодинамика — часть физики, изучающая общие свойства систем, находящихся в стационарном равновесном состоянии. Термодинамическим процессом называется всякое изменение состояния системы. Термодинамический процесс называется обратимым (равновесным или квазистатическим), если он протекает таким образом, что в ходе процесса изолированная система последовательно занимает ряд равновесных (точнее говоря, почти равновесных) состояний. Если в результате некоторого процесса система вернется в исходное состояние, то такой процесс называется циклом. Результатом обратимого цикла является возвращение системы в состояние, тождественно эквивалентное исходному. [c.21]

    При подготовке 4-го издания книга не подверглась значительному изменению. В некоторой степени переработано изложение материала, относящегося к природе химической связи в молекулах и кристаллах, рассмотрена донорно-акцепторная связь. Дополнен материал, относящийся к свойствам твердых тел, введены представления о зонной теории металлов и полупроводников. Расширено изложение особенностей свойств газов, кристаллов при очень высоких температурах. Рассмотрены некоторые процессы при очень низких температурах (сверхпроводимость и др.). Расширен материал, посвященный внутреннему строению и свойствам воды в различных состояниях и процессам замерзания ее введено представление о релаксационном характере процессов, связанных с достижением равновесного состояния воды при изменившихся внешних условиях [c.12]

    В обратимом процессе через некоторое время устанавливается химическое равновесие. Равновесным состоянием называется такое термодинамическое состояние системы, когда при постоянных внешних условиях параметры системы (состав, давление и др.) не изменяются во времени, причем стабильность характеристик системы не обусловлена протеканием какого-либо процесса с участием внешней среды . Истинное равновесие является динамическим - постоянство свойств системы обусловлено не отсутствием процессов на молекулярном уровне, а одинаковой скоростью прямого и обратного процессов, [c.186]

    Отсутствие физических границ раздела в пределах одной фазы еще не означает постоянства всех свойств в пределах фазы. Существуют состояния, при которых некоторые свойства фазы плавно изменяются вдоль фазы. Например, два раствора соли разной концентрации, находящиеся в разных емкостях, образуют две фазы. Однако если аккуратно (так, чтобы избежать механического перемешивания) нанести раствор с меньшей концентрацией на поверхность раствора с большей концентрацией, то в результате диффузии резкая граница между растворами исчезнет и в системе возникнет плавное уменьшение концентрации от дна стакана к его поверхности. Содержимое стакана будет представлять собой одну фазу с неравномерным, изменяющимся во времени в результате диффузии распределением концентраций. Состояния, характеризующиеся неравномерным, изменяющимся во времени распределением каких-либо свойств вдоль фазы, называются неравновесными состояниями. В конечном итоге неравновесные состояния переходят в равновесные состояния, которые при неизменных внешних условиях уже не изменяются во времени и характеризуются одинаковыми значениями всех свойств вдоль фазы. В этой главе речь будет идти только о равновесных состояниях. [c.129]


    В химической термодинамике свойства системы рассматриваются в ее равновесных состояниях. Представим, что некоторая система У переходит из равновесного состояния 1, характеризующегося температурой Т1 и давлением р1,в равновесное состояние 2, характеризующееся температурой Тг и давлением рг- Изучение скорости процесса перехода системы V из равновесного состояния 1 в равновесное состояние 2 и его молекулярного механизма — область химической кинетики. Химическая термодинамика изучает систему в двух равновесных состояниях (конечном и начальном) и на этом основании определяет возможность (или невозможность) самопроизвольного течения [c.93]

    В химической термодинамике свойства системы рассматриваются в ее равновесных состояниях. Представим, что некоторая система У переходит из равновесного состояния 1, характеризующегося температурой 7, и давлением р, в равновесное состояние 2, характеризующееся температурой и давлением рг. Изучение скорости процесса перехода системы V из равновесного состояния 1 в равновесное состояние 2 и его молекулярного механизма — область химической кинетики. Химическая термодинамика изучает систему в двух равновесных состояниях (конечном и начальном) и на этом основании определяет возможность (или невозможность) самопроизвольного течения процесса при заданных условиях в указанном направлении, характеризует энергетические изменения, происходящие в результате перехода, устанавливает значения температуры, давления, концентраций веществ в системе, при которых достигается максимальный выход продуктов реакции, н решает еще целый ряд очень важных вопросов. В зависимости от условий перехода системы из одного [c.85]

    Для характеристики гигроскопичности твердых водорастворимых веществ в условиях, когда они поглощают влагу из воздуха, достижение равновесного состояния при переходе всего вещества в раствор вообще не имеет практического смысла. Важна лишь скорость поглощения влаги в начальный период контакта с воздухом. Жидкость в капиллярах гидрофильных веществ имеет вогнутый мениск, над которым давление пара меньше, чем над плоской поверхностью. В результате этого капиллярная конденсация может идти и при относительной влажности воздуха меньшей, чем гигроскопическая точка массы насыщенного раствора. Свойства воды и растворов в адсорбционном слое также отличаются от их свойств в объеме. Поэтому после образования тончайшей поверхностной жидкой пленки давление пара над ней меньше давления пара над насыщенным раствором и становится ему равным лишь после достижения некоторого уровня влажности. [c.276]

    Основным прибором для исследования реологических свойств тиксотропных дисперсных систем является ротационный вискозиметр, обеспечивающий возможность измерения зависимости между величинами касательных напряжений и скоростей деформации в условиях чистого сдвига и нри достижении в ряде случаев равновесного состояния в потоке. Признаком равновесия служит неизменность величины касательного напряжения, достигаемая через некоторое время после перехода от одной скорости деформации к другой, а критерием правильности констатации достижения равновесного состояния — совпадение экспериментальных точек на восходящем и нисходящем участках реологической кривой. Для тел, характеризующихся весьма длительными сроками установления равновесного состояния, применение этого признака может привести к существенным ошибкам, а для тел, которым присуще явление гистерезиса, использование указанного критерия становится невозможным. [c.184]

    Необратимые флуктуации и механизм самоорганизации белка. Предполагают, что в начальный период все флуктуации - периодические вращения атомных групп вокруг ординарных связей - являются беспорядочными и несинхронизированными друг с другом. В равновесных системах все флуктуации обратимы и согласно основной теории вероятности (так называемого закона больших чисел) составляют пренебрежимо малые поправки к средним значениям. За редким исключением (например, рассеяние света гомогенной средой и броуновское движение, вызываемые обратимыми флуктуациями плотности) они не коррелируют со свойствами системы и не оказывают влияние на ее переход в равновесное состояние В неравновесных системах среди множества обратимых, неустойчивых флуктуаций возникают необратимые флуктуации, оказывающие радикальное воздействие на эволюцию системы. Они не остаются малыми поправками к средним значениям, а существенно меняют сами эти значения, стирая различие между случайным отклонением и макроскопическим проявлением системы. При свертывании белка подавляющее большинство флуктуаций также обратимо и неустойчиво. Но некоторые из них приводят к сближению определенных аминокислотных остатков, и тогда те могут эффективно взаимодействовать между собой. По своим последствиям образующиеся контакты между валентно-несвязанными атомами могут быть подразделены на близко-, средне- и дальнодействующие. Флуктуации, приводящие к образованию первого вида, изменяют взаимное расположение атомных групп в пределах одного аминокислотного остатка второго вида - расположение остатка относительно соседних в последовательности третьего - относительно удаленных по цепи остатков. В зависимости от конформационного состояния белковой цепи по ходу ее сборки одни и те же флуктуации могут быть как обратимыми, так и необратимыми. Последними, т.е. бифуркационными, флуктуации становятся только в том случае, если каждая из них возникает в строго определенном месте последовательности бифуркаций между флуктуирующим клубком и трехмерной структурой. Обратимые флуктуации бесследно исчезают, а необратимые, стабилизированные специфическими невалентными взаимодействиями остатков, остаются в виде гигантских "застывших флуктуаций". [c.96]

    На первый взгляд может показаться, что рассмотренный механизм структурирования белковой цепи принципиально не отличается от кристаллизации низкомолекулярных соединений и образования у некоторых синтетических полимеров линейных регулярных форм. Это, однако, не так, хотя в обоих случаях процессы осуществляются посредством случайных флуктуаций и взаимодействий валентно-несвязанных атомов. Существенное различие состоит в том, что кристаллизацию малых молекул в насыщенном растворе и формирование ближнего порядка (одномерного кристалла) у искусственного полимера можно представить равновесными процессами, т.е. путем обратимых флуктуаций и непрерывных последовательностей равновесных состояний. Сборку же белковой цепи в трехмерную структуру нельзя даже мысленно провести только через равновесные положения системы и без привлечения бифуркационных флуктуаций. Механизм пространственной самоорганизации белка имеет статистико-детерминистическую природу и поэтому является принципиально неравновесным. Его реализация невозможна без необратимых флуктуаций, а его описание - без установления связи между свойствами макроскопической системы и внутренним строением ее микроскопических составляющих. С позиции равновесной термодинамики подобные явления просто не могут существовать. [c.99]

    Здесь уместно остановиться на одной важной особенности термодинамических свойств тела. Каждая совокупность значений свойств описывает некоторое вполне определенное состояние тела независимо от того и без всякой связи с тем, каким путем тело пришло именно к этому состоянию. Свойства тела являются функциями его состояния, и если последнее так или иначе зафиксировано, то все свойства тела сейчас же приобретают строго определенные и единственные для данного состояния значения. Так, например, способ получения кумола (а таких способов известно несколько) не является его свойством, тогда как его удельный объем или упругость пара при данной температуре являются в термодинамическом смысле свойствами кумола. Совокупность значений свойств системы определяет ее термодинамическое состояние, и, наоборот, каждому определенному равновесному состоянию системы отвечает одно единственное сочетание значений ее свойств, причем важно отметить, что установленное соответствие является взаимно однозначным. [c.8]

    Уравнение равновесия (III. 60) может быть представлено графически в системе координат у — х в виде гиперболы, изображенной на фиг. 13. Эта линия ОАВ называется кривой равновесия у х я играет очень важную роль в расчете процесса ректификации. Каждой точке кривой равновесия у — х отвечает вполне определенное состояние рассматриваемой системы, характеризующееся определенным сочетанием значений ее свойств — составов фаз, температуры и давления. Точка 0(0,0) является фигуративной точкой чистого ВКК, и поэтому ей при заданном постоянном внешнем давлении отвечает максимальная температура системы. Точка В(1,1) отвечает чистому НКК, и поэтому ей соответствует при постоянном р минимальная температура системы /д. Всякая другая точка Л(х, у) кривой равновесия определяет некоторое равновесное состояние бинарной системы с температурой /, промежуточной [c.91]

    Однако большинство осадков тонкодисперсных суспензий обычно бывают липкими, мажущими и при механическом воздействии способны пластически деформироваться, т. е. вести себя в некотором отношении как жидкие тела. Эти осадки представляют собой что-то среднее между твердыми и жидкими телами. Действительно, основное свойство жидкого тела — приобретать форму сосуда, в который оно помещено, является присущим и для таких осадков с той только разницей, что жидкое тело мгновенно приобретает форму сосуда, а текучий осадок, помещенный в сосуд, приобретает его форму через определенный промежуток времени. Это время называют временем релаксации — время, в течение которого система из напряженного состояния приходит в равновесное состояние, соответствующее минимуму свободной энергии. [c.63]

    Полезно обратить внимание на то, что понятие минимального расхода экстрагента не является вполне аналогичным понятиям минимального расхода жидкого поглотителя в процессах абсорбции (см. равенства (5.65) и (5.66)) и минимального флегмового числа (соотношение (6.15)). Общим элементом этих понятий является то, что ограничения по расходам поглотителей во всех случаях связаны с некоторыми предельными физико-химичес-кими свойствами двух- и трехкомпонентных систем. Различие состоит в том, что для абсорбции и ректификации понятия минимальных расходов связаны с тем, что равновесное состояние достигается для двух фаз, а в процессах экстракции равновесие означает, что образуются нерастворимые жидкие смеси. Кроме того, для экстракции кроме минимального имеет место еще и понятие максимального расхода экстрагента, аналога которого нет в процессах абсорбции и ректификации. [c.450]

    Если некоторые параметры состояния не оказывают заметного влияния на свойства равновесных фаз, то математическая запись правил фаз соответственно изменяется. Так, в системах, фазы которых находятся в конденсированных состояниях (жидком или твердом), давление практически не влияет на составы равновесных фаз. В таких случаях один параметр состояния (в данном случае — давление) может быть исключен из рассмотрения и правило фаз будет выражаться равенством [c.30]

    Для систем, состоящих из реальных фаз, фазовое равновесие не может быть рассчитано априори и исследуется экспериментально. По опытным данным может быть найдена зависимость изобарного потенциала от параметров состояния. Это не означает, однако, что уравнение состояния (1-130) для таких систем не имеет практического значения. С помощью этого уравнения и некоторых его частных форм представляется возможным, как это будет показано ниже, рассчитывать одни свойства равновесных систем по данным о других. Уравнение состояния позволяет также выявить ряд важных качественных закономерностей, общих для всех равновесных систем. [c.108]

    Существование моносахаридов в циклических формах устраняет некоторые, упомянутые ранее, противоречия в объяснении химических свойств моносахаридов. Эти формы наглядно показывают отличие одного из гидроксилов — полуацетального — от остальных — спиртовых. В то же время моносахаридам присущи и многие свойства карбонильных соединений. Следовательно, циклические и открытая формы моносахаридов находятся в растворе в динамическом (таутомф-ном) равновесии, и такой вид таутомерии называется кольчато-цепной, или цикло-оксо-таутомерией. Однако в равновесном состоянии таутомерные формы находятся не в равных количествах, а с преобладанием энергетически более устойчивых изомеров. Такими, как правило, являются таутомеры с шестичленньши (пиранозными) циклами. Так, О-глюкоза в водном растворе представлена главным образом пиранозными формами (64% р- и "36% а-аномеров, рис. 15.4). Открытая и фуранозные формы присутствуют в ничтожно малых количествах, но важно отметить, что взаимные переходы циклических форм друг в друга осуществляются через открытую форму моносахарида. [c.393]

    Гигроскопический метод определения влажности основан на свойстве некоторых веществ относительно быстро приводить свою влажность в равновесное состояние с влажностью окружающего воздуха. Изменение влажности материала вследствие адсорбции или десорбции паров воды сопровождается при этом его деформацией — удлинением и сокращением. По величине деформации можно судить об относительной влажности воздуха. Однако приборы, основанные на гигроскопическом методе, обладают малой точностью. [c.171]

    Ввиду того что абсолютный потенциал отдельного электрода измерить невозможно, все измерения потенциалов в электрохимических системах производятся с помощью электродов сравнения. Для получения приемлемых результатов электрод сравнения должен быть обратимым, и в течение измерения его потенциал должен оставаться постоянным. Теоретически в качестве электрода сравнения можно использовать любой электрод в равновесном состоянии, если известны его термодинамические свойства. Однако ни об одном из реальных электродов нельзя сказать, что он идеален или обладает обратимым равновесным потенциалом. Поскольку некоторые электроды более обратимы и воспроизводятся легче других, они более пригодны в качестве электродов сравнения. [c.128]

    При данных температуре, давлении и относительной влажности воздуха на поверхности твердых тел образуется тонкая водяная пленка, соответствующая равновесному состоянию. В зависимости от химических и физических свойств материала образуется сплошная поверхностная водяная пленка или же влага проникает во внутренние слои материала. В первом случае существенно снижается поверхностное сопротивление и практически исключается возникновение электростатического заряда. Водяные же пары, проникшие внутрь материала, не только не препятствуют возникновению электростатического заряда, а, наоборот, в некоторых случаях могут способствовать увеличению его. Это явление объясняется тем, что во многих случаях вода действует как пластификатор и при соприкосновении двух тел способствует достижению максимальной площади контакта и возникновению настолько большого электрического заряда, что при разъединении тел происходит разряд. Даже если поверхностное сопротивление относительно мало, этого недостаточно для отвода статического заряда, [c.95]

    В-третьих, только при обратимом процессе термодинамические параметры приобретают однозначность и становятся возможными термодинамические расчеты, определяющие изменения различных свойств системы в обратимом процессе. Найденные изменения Б силу независимости изменения свойств системы от пути про-< цесса будут совпадать с изменениями свойств, сопровождающими необратимый процесс (при совпадении исходного и конечного состояния систем). Да и графически изобразить необратимые процессы невозможно любая точка в соответствующей системе координат, например в системе координат Р Т, характеризуя равновесное состояние, превращается для системы, совершающей необ-> ратимый процесй, в неопределенную область. Эта область, размеры которой тем значительнее, чем сильнее отличается состояние системы от равновесия, будут заключать в себе совокупность точек, охватывающую некоторый интервал равновесных состояний. Поэтому графически можно изобразить только обратимый про- цесс. Следовательно, рис. 1а и б имеет условный характер, иллюстрируя неопределенность значений Р и V между соответствующими равновесными состояниями системы. [c.23]

    В 154—158, посвященных свойствам растворов электролитов, рассматривались главным образом состояние и свойства растворенных электролитов, а изменение состояния самого растворителя и, в частности, воды почти не затрагивалось. Это отвечает преимущественному направлению в изучении таких растворов. Большинство исследований растворов электролитов, за исключением работ К- П. Мищенко, О. Я. Самойлова, Фалькенгагена и некоторых других, посвящено в основном изучению состояния растворенных веществ. Между тем состояние молекул растворителя и, в частности, молекул воды (а также и самой воды в целом) очень чувствительно ( 61) к действию растворенных электролитов. Молекулы воды, гидратируя ионы, сами претерпевают поляризацию и соответствующие изменения строения и свойств. Влияние этих воздействий распространяется и на прилегающие слои воды. Мы видели на примере тектогидратов ( 53) и на примере изменения температуры максимальной плотности ( 61), как сильно могут изменяться при этом некоторые свойства воды. Зависимость свойств воды от таких воздействий усложняется еще тем, что вследствие непрерывного перемещения ионов по объему раствора каждый данный элемент объема воды испытывает воздействия, быстро меняющиеся во времени, а скорость достижения равновесного состояния не всегда достаточно велика. [c.394]

    Диаграммы указывают условия образования на поверхности электрода диффузионно-барьерных пленок, но не содержат данных об их защитных свойствах в присутствии специфических анионов, таких как ЗО или СГ. Они не содержат также сведений о возможности образования пленок нестехиометрического состава (некоторые из этих пленок существенно влияют на скорость коррозии — см. гл. 5, однако отчетливо показывают природу стехиоме-трических соединений, в которые при достижении равновесия могут превратиться любые менее устойчивые соединения. Учитывая вышеупомянутые ограничения, диаграммы весьма полезны для описания равновесных состояний системы металл—вода в кислых и щелочных средах как при наложении внешней поляризации, так и без нее. Диаграммы Пурбе для железа приведены и обсуждаются в приложении 3. [c.39]

    Н. А. Цытович (1945) впервые разработал общую теорию состояния и свойств воды в мерзлых грунтах и развил на этой основе теорию их механических свойств. Как было указано выше, он показал, в частности, что в мерзлых грунтах некоторая часть воды находится в устойчивом жидком состоянии при отрицательных температурах (принцип равновесного состояния воды и льда в мерзлых грунтах). Этот вывод он относит к воде, находящейся в состояниях, промежуточных между свободным и прочно адсорбированным. Нагревание (при отрицательных температурах) обратимо увеличивает количество такой жидкой воды, а охлаждение уменьшает его. Кроме температуры, количество жидкой воды зависит от химического состава и структуры грунта (рис. 26). Н. А. Цытович указывает при этом, что слои воды, находящиеся на расстоянии примерно полмикрона от поверхности минеральных частиц грунта, являются уже практически свободными они замерзают и оттаивают практически при 0° С. [c.37]

    Обычно фазовые диаграммы отражают равновесное состояние систем, но если равновесие достигается медленно, можно пользоваться диаграммами, построенными по кинетическим данным (изохроны, полихроны). Некоторые системы могут находиться в метастабиль-ном состоянии, когда состав и свойства отдельных их частей отличаются от равновесных. При этом между собой метастабильные фазы находятся в состоянии истинного равновесия. Метастабильные состояния отличаются от лабильных, или неустойчивых, тем, что последние постепенно, в течение более или менее длительного времени, переходят в равновесные состояния без внешних воздействий. Ме-тастабильная же система переходит в равновесное состояние только в результате таких воздействий. Например, при внесении кристаллической затравки в пересыщенный раствор. Метастабильная фаза, сама по себе устойчивая, становится неустойчивой в присутствии другой (стабильной) фазы того же вещества. Более устойчивые формы обладают меньшим давлением пара и меньшей растворимостью (см. разд. 4.5.1). [c.128]

    Действительно, задача формулируется следующим образом определить наблюдаемые на опыте свойства макроскопической системы при некоторых заданных макроскопических параметрах (допустим, это температура Т, число частиц Л/, объем системы V). То, что мы знаем о состоянии системы, — лишь небольшое число макроскопических параметров. Предположим, что механические ха-)зктеристики частиц и законы взаимодействия между частицами нам известны. -1о мы никогда не располагаем сведениями о точном механическом состоянии системы в какой-то момент времени (не известны начальные условия механической задачи). Следовательно, механическую задачу не удается сформулировать таким образом, чтобы результатом было однозначное решение. Если же в число заданных параметров входят немеханические величины (например, температура), то чисто механическое рассмотрение вообще исключается. В то же время точное механическое описание оказалось бы, пожалуй, излишне подробным. Мы знаем из опыта, что равновесное состояние макроскопической системы может быть задано с помощью небольшого числа параметров (для к-компонентной гомогенной системы достаточно задать к -]- 2 параметра, чтобы определить ее состояние и массу), причем равновесные значения параметров совершенно не зависят от того, каким было начальное состояние системы.. Системы одинаковой природы при заданных условиях (например, при заданных Т, V, Ы) обнаруживают совершенно одинаковые равновесные макроскопические свойства, хотя их исходные механические состояния могут быть весьма различными. [c.7]

    Определим, далее, каким особым свойством должна обладать функция р для равновесной системы. Если система при фиксированных условиях изоляции равновесная, то среднее значение некоторой харякте-ризующей состояние системы функции М не должно зависеть от времени — 0. Как следует из выражения (III.9), это возможна лишь [c.48]

    Физтески значимые результаты могут быть получены при помощи аппроксимации инвариантных состояний равновесными, если использовать общую теорему о выпуклых функциях, принадлежащую Израэлю (см. приложение А.3.6). Из этой теоремы следует, что в некотором подпространстве или конусе пространства можно найти взаимодействие, которое обладает равновесным состоянием, удовлетворяющим определенным неравенствам. Если эти неравенства выражают отсутствие определенного кластерного свойства, то отсюда можно вывести физические следствия. Доказываемая ниже теорема 3.20 содержит пример взаимодействия, у которого имеется несколько различных равновесных состояний (другие примеры см. в упражнении 1 главы 4). [c.74]

    Термодинамика отвечает иа вопросы о том, почему происходит реакдия и как в ходе реакщш изменяется полная энергия системы- При этом рассматриваются только характеристики исходных веществ и конечных продуктов. Классическая методология аналитической химии опирается на термодинамические константы, которые определяют, измерив некоторое свойство реакщгонной системы в равновесном состоянии. Кинетика же отвечает на такие вопросы, на которые термодинамика не дает убедительного ответа, напрнмер, какой механизм лежит в основе превращения реагирующих веществ в конечные продукты, сколько времени занимает этот процесс, какими свойствами обладают промежуточные соединения, образующиеся и расходующиеся в ходе реакции, какова энергия их образования и разрушения- Огромное число методов современной аналитической химии базируется на кинетических параметрах, получаемых из расчетов скорости реакции как функции изменений концентраций каких-либо реагентов или продуктов во времени. Кроме того, знание кинетических констант позволяет выяснять механизмы реакций и использовать их в дальнейшем для учета нестехиометрических взаимодействий- Однако только совокупность [c.318]

    Термодинамические переменные могут изменяться в некоторых пределах или оставаться постоянными. Особенностью описания термодинамических процессов является то, что они рассматриваются не во времени, а в обобщённом пространстве независимых термодинамических переменных, т.е. характеризуются не скоростями изменения свойств, а величинами изменений. Все термодинамические свойства строго огфеделеиы только в равновесных состояниях. Различают следующие состояния термодинамических систем  [c.10]

    Почему же в условиях ПИА отдельные пробы не мешают друг другу Если скорость потока достаточно велика, объем вводимой пробы достаточно мал и трубка очень тонкая, то щюбы не будут смешиваться друг с другом, они только перемешиваются с той жидкостью, которая негфе-рывно течет по трубке. Дело в том, что возможность (нежелательная) смешения проб зависит от интервала времени между вводом последовательных проб и размывания зон этих проб на пути от входа до детектора. Частота ввода проб обычно лежит в некотором диапазоне, обеспечивающем желаемую производительность анализа. Дисперсия (размывание пробы) отфеделяется в первую очередь гидродинамическими свойствами проточной системы. А эти свойства прямо свя дны с геометрическими параметрами (длина, диаметр, форма) трубопроводов, реакторов и прочих элементов конструкции существенны также скорости потоков, объемы проб и реагентов и некоторые другие характеристики. Варьируя эти параметры, можно добиться приемлемого размывания зон. Что же касается воспроизводимости сигнала, то ее вполне можно обеспечить и без достижения стационарного, равновесного состояния — строго следя за постоянством условий анализа. [c.411]

    То же самое можно сказать о понятии упругости и законе Гука в случае равновесного состояния тела. Поэтому оба понятия (вязкость и упругость), а также соответствующие законы (Ньютона и Гука) не могут быть приложены к случаю неравновесного или нестационарного процесса деформации . В этом случае требуется введение нового физического понятия, включающего в себя некоторым образом имеющиеся понятия вязкости и упругости, но не сводящегося к ним в какой бы то пи было форме , например к сложению унрух их и вязких свойств. Настоящий доклад посвящен краткому разбору этого явления. [c.214]

    Некоторые растворители, например диэтиловый эфир, имеют слабые основные свойства и не проявляют совсем кислотных свойств. Для таких растворителей не может быть указано равновесное состояние автопротолиза. [c.78]

    Водородные связи молекул, находящихся в пустотах, разорваны, поэтому их энергия отличается от энергии молекул, находящихся в равновесных положениях. Таким образом, состояния с координационным числом 4 в воде реализуются лищь частично, а число водородных связей, приходящихся на одну молекулу, уменьшается с увеличением температуры. Однако если координационное число рассматривать просто как среднее число молекул, ближайших к данной выбранной молекуле, независимо от характера связей между ними (первую координационную сферу), то это число растет с повышением температуры. Для изучения некоторых свойств воды (например, удельной теплоемкости) важно отметить, что молекулы в пустотах до некоторой степени свободны ( гидро-фобны ) и не связаны непосредственно со своими соседями. Напомним также, что водородные связи, образующиеся. между молекулами, находящимися в положении равновесия, препятствуют тепловому движению (особенно ротационным колебаниям).  [c.47]


Смотреть страницы где упоминается термин Некоторые свойства равновесного состояния: [c.123]    [c.126]    [c.427]    [c.39]    [c.389]    [c.17]    [c.406]   
Смотреть главы в:

Введение в популяционную генетику -> Некоторые свойства равновесного состояния




ПОИСК





Смотрите так же термины и статьи:

Свойства и состояние тел

Состояние равновесное



© 2025 chem21.info Реклама на сайте