Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диссоциация и ассоциация белковых молекул

    Ферменты, молекулы которых состоят из нескольких полипептидных цепей, диссоциируют на субъединицы под влиянием тех же агентов, какие обычно используются для денатурации белков. Для некоторых белков хорошо исследован процесс ассоциация — диссоциация. Рассмотрим два наибо-,п ее подробно изученных в этом отношении белка — глутаматдегидрогеназу и альдолазу. Молекула глутаматдегидрогеназы обладает тремя типами организации на уровне четвертичной структуры. Непосредственно после выделения ее молекулярный вес составляет от 1,0-10 до 1,3-10 (определения по скорости седиментации и диффузии). В результате диссоциации фермента, которая стимулируется восстановленным НАДФ, некоторыми пуриновыми нуклеотидами или просто разбавлением фермента, получаются субъединицы [c.116]


    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]

    Он состоит из двух идентичных субъединиц а М 53 000) и (7И57 000) их аминокислотные последовательности в значительной степени гомологичны, что указывает на дупликацию гена в ходе эволюции. Микротрубочки — полимеры тубулина. Тринадцать линейных протофиламентов субъединиц тубулина составляют структуру трубочки, так что поперечное сечение имеет ось симметрии 13-го порядка, а вид -сбоку представляет упакованные по спирали субъединицы (рис. 10.5). Процессы ассоциации отдельных молекул тубулина н диссоциации микротрубочек находятся в равновесии, на которое влияют различные параметры (температура, концентрации Са + и GTP, фосфорилирование). Очень чистый тубулин образует микротрубочки только в условиях высокой концентрации белка и магния. В клетке действуют и другие факторы, видимо, влияющие на [c.311]

    Модель Эдера является самой общей из возможных моделей связывания лиганда чистым неассоциирующим белком в равновесных условиях. Под чистым белком понимается белок, способный находиться в различных изомерных формах, равновесие между которыми устанавливается очень быстро кроме того, подразумевается, что изомеризация не включает процессы диссоциации—ассоциации белка. Рассмотрим модель Эдера для белка, содержащего четыре связывающих центра на молекулу и представленного двумя находящимися в равновесии формами — активной (Е) и неактивной (Е )  [c.173]

    В последнее время для этой цели широко используются различного рода метки флюоресцентные, свободнорадикальные и др. [71—75]. Первым указанием на изменение структуры белка при связывании аллостерических эффекторов послужили данные по изменению степени диссоциации— ассоциации регуляторных ферментов под действием аллостерических эффекторов [76, 77]. По-видимому, изменение прочности связей между субъединицами в ферментативном олигомере является очень чувствительным тестом на конфор-мационные изменения белковой молекулы при связывании аллостерических эффекторов. Обнаружено, например, что [c.105]


    Во многих случаях конформационные изменения белков связаны с ассоциацией или диссоциацией субъединиц. Маловероятно, что такие процессы могут протекать достаточно быстро, чтобы они были существенны при каждом превращении молекулы субстрата, так что их роль, по-видимому, сводится к контролю ферментативной активности. На вопрос, связаны ли все эти процессы с изменением конформации отдельных субъединиц, до настоящего времени не было найдено определенного ответа, однако весьма вероятно, что в большинстве случаев такие изменения имеют место, и было бы весьма удивительно, если бы столь большие структурные перестройки происходили бы без соответствующего конформационного изменения субъединиц. В случае щелочной фосфатазы из Е. соИ было показано, что зависящее от времени конформационное изменение кислотно диссоциирующих субъединиц должно иметь место до того, как частицы ассоциируются в нативный фермент [57]. [c.243]

    В других случаях возможна обратимая диссоциация глобулы до отдельных полипептидных цепей. Для гемоглобина разделение на а-, р-цепи происходит достаточно легко, тогда как воссоединение отдельных а- и (3-цепей — трудно выполнимая задача. Однако понятие четвертичной структуры основано совсем не на возможности реконструкции фермента из отдельных субъединиц. Строгое определение четвертичной структуры означает, что в сложную глобулу фермента объединяются структурно независимые элементы — отдельные субъединицы. Если ассоциация не изменяет строения отдельных частей, то понятие четвертичной структуры приобретает ясный физический смысл. В противном случае речь идет лишь об обратимости построения сложной молекулы белка, не зависящей от иерархии структур — первичной, вторичной, третичной и четвертичной. В действительности отдельные субъединицы ферментов изменяют свои конформации при ассоциации, поэтому понятие четвертичной структуры является еще менее строгим, чем третичной или вторичной. Речь идет просто о том, что пространственное строение белковой глобулы зависит от всех межмолекулярных взаимодействий в системе. Как правило, построение глобулы белка не удается рассматривать в виде последовательности независимых процессов — скручивания цепи в спираль, укладку цепей в отдельные субъединицы и объединение независимых субъединиц. На каждом этапе происходят конформационные изменения, что и делает нестрогим понятие вторичной, третичной и четвертичной структуры. [c.124]

    В ряде случаев ясно, что ассоциация гидрофобных белков необходима для проявления функциональной активности, особенно когда фермент состоит из несимметричных и комплементарно соответствующих друг другу субъединиц. Такой случай называют гетерологической ассоциацией (в отличие от и з о л о г и-ческой ассоциации, при которой взаимодействуют симметричные протомеры, сохраняющие эквивалентность ). Пример гетерологической ассоциации дает гексокиназа, катализирующая фосфорилирование глюкозы в присутствии Mg-ATФ (Гончарова, 1985). Гексокиназа существует в виде димера с молекулярной массой 102 кДа. Повышение pH или ионной силы вызывает диссоциацию димера, наличие обоих субстратов реакции — его ассоциацию. Субъединицы в ассоциате ориентированы несимметрично два типа кристаллов, обнаруживаемых на рентгенограммах, соответствуют двум способам ассоциации. Для одного из способов, соответствующего наличию ферментативной активности, показано, что группы, участвующие в образовании белкового домена, принадлежат различным участкам каждого протомера. Это означает, что после связывания партнеров каждая молекула в ассоциате имеет разные группы в свободном состоянии. [c.48]

    Основное преимущество модели диссохщи ующего белка состоит в том, что ее гораздо легче проверить экспериментально,, чем модели, рассмотренные ранее связывание лиганда в этом случае должно сопровождаться большим изменением молекулярного-веса белка и степень кооперативности должна зависеть от концентрации последнего. Эти особенности связывания лиганда характерны только для модели диссоциирующего белка, и их легко выявить экспериментально. Фриден и Колмэн [57] показали, например, что обратимая ассоциахщя позволяет полностью объяснить связывание различных нуклеотидов глутаматдегидрогеназой. Процессы диссоциации—ассоциации белковой молекулы могут давать определенный вклад в кооперативность и в случае гемоглобина, который способен диссоциировать на димеры в растворах с высокой концентрацией соли. Однако одной только диссоциацией объяснить, кооперативное связывание кислорода не удается, поскольку оно наблюдается во многих случаях, когда диссоциация отсутствует. При работе с любым белком необходимо всегда проверять, зависит ли наблюдаемая кооперативность от концентрации белка. В тех случаях, когда обнаружив ается изменение степени кооперативности белка, в качестве возможной причины следует рассматривать диссоциацию. [c.195]

    Так как а-амино- и -карбоксильные группы всех аминокислот, входящих в состав белка, кроме концевых, участвуют в образовании пептидных связей, то на поведение молекулы белка в растворе наибольшее влияние оказывает способность к диссоциации функциональных групп в боковых цепях аминокислот (см. стр. 28). Если pH среды, в которой находятся молекулы белка, имеет такую величину, что число положительно заря-7кенных групп в молекуле равно числу групп, заряженных отрицательно, то говорят, что белок находится в изоэлектрической точке (см. стр. 36). Если молекулы белка в этих условиях поместить в поле постоянного тока, то они не будут двигаться ни к катоду, ни к аноду. В изоэлектрической точке белок имеет, как правило, наименьшую растворимость и склонен к ассоциации. Так, ацетилхолинэстераза — фермент, гидролизующий ацетилхолин, имеет изоэлектрическую точку при pH 5,1, причем растворимость фермента в этих условиях уменьшается в несколько раз рис. 8). [c.23]


    Участие посторонних белков в сборке, как оказалось, не соответствует традиционному представлению о наличии прямой аналогии между механизмами свертывания полипептидных цепей в искусственных условиях и клетке. Ставшие известными функции молекулярных шаперонов потребовали определенной коррекции давно сформулированного и многократно подтвержденного в опытах in vitro принципа не нуждающейся в каких-либо посредниках самосборки белка. Выяснилось, что это не совсем так. Более того, оказалось, что в сложных клеточных условиях нужны белки, ассистирующие не только котрансляционное и посттрансляционное свертывание полипептидных цепей, но и помогающие транспорту белковых молекул через мембраны, реорганизации, диссоциации и ассоциации белков в олигомерные комплексы, сборке олигомеров внутри органелл и ликвидации белковых повреждений, вызванных стрессовыми и иными внешними воздействиями. [c.420]

    Обратим внимание на то, что в уравнениях (12.3) — (12.6) ряд членов содержит коэффициент 2. Это связано с тем, что белок О имеет два центра связывания и, следовательно, концентрация центров, по которым может идти процесс комплексообразования в свободном белке, вдвое больше самой концентрации белка. То же самое можно отнести и к комплексу Вг, только в этом случае концентрация связанного лиганда вдвое выще концентрации самого комплекса Вг. При этом заметим, что кинетические константы и к-2 относятся к ассоциации лиганда с одним центром связывания или к диссоциации одного связанного с лигандом центра ком-плексообразованяя. Понятно, что в этом случае вероятность связывания первой молекулы лиганда с каким-либо из двух центров связывания или диссоциации одной молекулы из двух связанных молекул лигандов вдвое выше,-что и задается соответствующим коэффициентом 2. Иногда этот коэффициент включают соответственно, в константы к и А г. [c.301]

    Изоэлектрическое фокусирование обладает наивысшей разрешающей способностью, когда-либо достигавшейся при разделении белков цо зар5 дам [58—64, 92]. Этот метод позволяет разделить белки, велйчины р/ которых различаются всего на 0,01 ед. pH. Иногда Для такого разделения бывает достаточно различия между двумя структурами на одну заряженную группу. При помощи метода изоэлектрофокусирования можно также обнаружить другй различия в зарядах, которые, строго говоря, не связаны с макроскопической егомогенностью белков. Вот некоторые из факторов, обусловливающих такие различия посттрансляционная модификация первичной структуры (например, дезамидирование), связывание лигандов, химическая модификация, вариации в небелковых компонентах, например липидах, углеводах и других простетических группах, ассоциация и диссоциация, изменения окислительно-восстановительного состояния металлоферментов. Если при анализе картины изоэлектрофокусирования иметь в виду эти факторы, то полученные данные могут приобрести дополнительную ценность, поскольку в принципе они позволяют обнаружить микрогетерогенность белковых структур. В настоящее время метод изоэлектрического фокусирования применяют в сочетании с другими электрофоретическими методами, например в сочетании с электрофорезом в полиакриламидном геле в присутствии додецилсульфата натрия, для получения двумерных карт разделяемых компонентов. В одном направлении производят разделение белков в соответствии со значениями их рД а в другом — в соответствии с размерами их молекул, т. е. в соответствии с их молекулярными массами. При помощи этих методов можно охарактеризовать смеси, содержащие тысячи белков [94]. Еще несколько лет тому назад разделение с таким высоким разрешением было просто немыслимо, а в настоящее время этот метод анализа находит все более широкое и все более успешное применение в различных биохимических исследованиях. [c.126]

    Отклонение процесса денатурации от схемы двух состояний может быть не только истинным, но и кажущимся, хотя сделать здесь однозначное отнесение не всегда представляется возможным. Если, например, конформация белка включает несколько доменов, то их развертывание при денатурации может происходить последовательно, в значительной степени независимо и с разной скоростью. Денатурация муль-тисубъединичных белков, имеющих четвертичную структуру, обычно начинается с диссоциации и их последующего развертывания [43, 44]. Усложняют процесс денатурации и затрудняют его интерпретацию также межмолекулярная ассоциация и вьшадение в осадок развернутых белковых цепей, что часто происходит в слабоденатурирующей среде. В результате образуется третье состояние белка. Подобным образом ведут себя карбоангидраза и стафилококковая нуклеаза, развертывающиеся при малой концентрации гуанидингидрохлорида и необратимо денатурирующие из-за малой растворимости в этих условиях. Еще одна причина сложности процесса денатурации может заключаться в неоднородности молекулярной организации белка (в присутствии других белков или молекул в ассоциированном состоянии), которая имеет место или с самого начала, или возникает в процессе развертывания. Известным примером такого рода является овальбумин. Сложный характер его перехода N О впервые был отмечен Р. Симпсоном и У. Козманом в 1953 г. и в течение более двадцати лет не мог быть объяснен [c.351]

    Недавно нами предложен общий механизм ассоциации и диссоциации комплексов типа антитело—антиген или фермент — ингибитор, учитывающий динамические свойства белка и его взаимодействие с водой. В случае иммуноглобулинов считается, что активный центр и другие неполярные полости IgG между вариабельными и константными доменами РаЬ-фрагментов, между субъединицами IgG и между доменами Рс-фрагментов могут скачкообразно переходить из открытого состояния в закрытое и, наоборот, с вытеснением или сорбцией определенного количества воды. Соответствующие изменения свойств воды рассматриваются как переход, близкий к фазовому первого рода (т. е. без изменения свободной энергии, но со скачкообразным изменением энтальпии, энтропии и теплоемкости). Тем самым предполагаются высокая степень упорядоченности молекул воды в открытых белковых полостях и строгие требования к геометрии и свойствам полостей в таком состоянии. Разница в свободных энергиях воды, находящейся в открытой полости в неупорядоченном и квазикристаллическом состоянии, названа кластерфильным взаимодействием (Кяйвяряйнен, 1975а, б). [c.36]


Смотреть страницы где упоминается термин Диссоциация и ассоциация белковых молекул: [c.358]    [c.311]    [c.118]    [c.432]    [c.145]    [c.415]    [c.448]    [c.35]    [c.540]    [c.283]    [c.540]    [c.23]    [c.283]   
Смотреть главы в:

Макромолекулы в растворе -> Диссоциация и ассоциация белковых молекул

Макромолекулы в растворе -> Диссоциация и ассоциация белковых молекул




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Молекула ассоциация

Молекулы белка



© 2025 chem21.info Реклама на сайте