Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесия жидкость — жидкость в системах с ограниченной растворимостью жидкостей

Рис. 1Х-7. Диаграммы фазового равновесия жидкость—жидкость а — системы с одной парой ограниченно растворимых компонентов 6 — системы с двумя парами ограниченно растворимых компонентов в — системы с тремя парами ограниченно растворимых ком-лоиентов. Рис. 1Х-7. <a href="/info/939044">Диаграммы фазового равновесия жидкость—жидкость</a> а — системы с одной парой <a href="/info/365918">ограниченно растворимых компонентов</a> 6 — системы с двумя парами <a href="/info/365918">ограниченно растворимых компонентов</a> в — системы с тремя парами <a href="/info/6260">ограниченно растворимых</a> ком-лоиентов.

    Б. Равновесия жидкость — жидкость в трехкомпонентных системах. Диаграммы растворимости с одной областью расслоения. Диаграммы взаимной растворимости жидкостей в трехкомпонентных системах характеризуются большим разнообразием. Особенно часто встречаются системы, в которых две жидкости обладают ограниченной взаимной растворимостью, а третья жидкость неограниченно смешивается с каждой из них. Это, например, системы вода —бензол — этиловый спирт, вода —хлороформ —уксусная кислота, вода — ацетон —четыреххлористый углерод. [c.424]

Рис. V. 34. Равновесие жидкость — твердая фаза в бинарной системе с ограниченной взаимной растворимостью компонентов й твердом состоянии, Рис. V. 34. <a href="/info/13763">Равновесие жидкость</a> — <a href="/info/636">твердая фаза</a> в <a href="/info/56220">бинарной системе</a> с <a href="/info/1117344">ограниченной взаимной растворимостью компонентов</a> й твердом состоянии,
    Равновесия жидкость—твердая фаза при плавлении. Принципиальные особенности диаграмм этого вида были определены в классификации, приведенной в табл. 5.1. Ведут себя эти системы обычно сложнее, чем системы жидкость—жидкость. При изучении фазовых равновесий в системах первого типа необходимо учитывать 1) равновесие жидкость—твердая фаза, 2) ограниченную взаимную растворимость жидкостей, 3) ограниченную взаимную растворимость твердых растворов, [c.264]

    Диаграммы растворимости с двумя и тремя областями расслоения. В трехкомпонентных жидких системах равновесие также возможно при наличии двух или трех двойных систем с ограниченной растворимостью жидкостей. Некоторые сечения трехмерных диаграмм [c.425]

    Равновесие системы, состоящей из трех компоиентов А, В, С) с ограниченной взаимной растворимостью изображают, как и В случае трехкомпонентной системы пар—жидкость, в плоскости равностороннего треугольника (рпс. IX-7), Прн этом различают системы с одной, двумя н тремя парами ограниченно растворимых жидкостей. Признаком первой системы является неограниченная взаимная растворимость В в Л и С, но ограниченная А в С (например, бензол—этанол—вода). В диаграмме равновесия (рис. 1Х-7, а) точки D и Е соответствуют насыщенным растворам А С. Площадь под кривой DKE, носящей название биноидальной кривой, соответствует гетерогенным (двухфазным) смесям Д + В + С, а площадь вне биноидальной кривой — гомогенным трехкомпонентным растворам А В С. Каждая точка в гете- рогенной области может рассматриваться как смесь двух равновесных трехкомпонентных растворов. Так, например,, смесь. Изображаемая точкой М, образует два несмешивающихся насыщенных раствора L и N., Все смеси, изображаемые точками на прямой LN, носящей название к о н о д ы, или хорды р а в-Н о в е с и я, образуют те же растворы L и N нх составы могут быть определены по правилу рычага. В гетерогенной области Диаграммы можно провести сколько угодно конод, причем обычно [c.435]


    РАВНОВЕСИЕ В СИСТЕМАХ С ОГРАНИЧЕННО РАСТВОРИМЫМИ ЖИДКОСТЯМИ [c.307]

    Соотношения для растворимости (равновесия жидкость—жидкость) могут также быть получены, с помоп ью теории Флори-Хаггинса, В системах полимер—растворитель часто наблюдается ограниченная растворимость. Она обычна для систем полимер—полимер (несовместимость). Согласно теории Флори—Хаггинса, для [c.338]

    Для выбора разделяющего агента может быть рекомендован следующий путь. Прежде всего нужно рассмотреть данные о свойствах компонентов смеси, подлежащей разделению, а также условия равновесия между жидкостью и паром, чтобы выяснить ограничения относительно химической совместимости разделяющих агентов, й определить основные требования к ним с учетом степени неидеальности заданной смеси. Затем следует проанализировать данные о равновесии между жидкостью и паром [31], об азеотропных смесях [45] и растворимости [42, 43] в системах, образованных компонентами заданной смеси или их гомологами и различными веществами. Такое рассмотрение часто позволяет выявить критерии сравнительной оценки степени неидеальности в системах, образованных рядом соединений, которые представляют интерес в каждом конкретном случае. Таким путем были установлены некоторые важные в практическом отношении закономерности, например, что полярные вещества в наибольшей степени увеличивают относительную летучесть углеводородов с наибольшим отношением атомов Н С в молекуле. Если соответствующие данные о свойствах растворов отсутствуют или их недостаточно, то, руководствуясь представлениями о полярности, о водородной связи или образовании я-комплексов, следует наметить классы соединений, которые интересно испытать в качестве предполагаемых разделяющих агентов. Это испытание заключается в определении одного или не- [c.100]

    РАВНОВЕСИЯ ЖИДКОСТЬ - ЖИДКОСТЬ В СИСТЕМАХ С ОГРАНИЧЕННОЙ РАСТВОРИМОСТЬЮ ЖИДКОСТЕЙ [c.164]

    ИССЛЕДОВАНИЕ РАВНОВЕСИЯ МЕЖДУ ЖИДКОСТЬЮ И ПАРОМ В СИСТЕМАХ. ОБРАЗОВАННЫХ КОМПОНЕНТАМИ С ОГРАНИЧЕННОЙ ВЗАИМНОЙ РАСТВОРИМОСТЬЮ [c.152]

    При разработке практических применений методов азеотропной и экстрактивной ректификации часто возникает необходимость в исследовании равновесия между жидкостью и паром в системах, компоненты которых обладают ограниченной взаимной растворимостью. Расслаивание жидкости или конденсата пара затрудняет применение циркуляционного и динамического методов в их обычном оформлении. Источниками погрешности являются при этом вызванное расслаиванием нарушение соотношения между жидкими фазами в приемниках проб (циркуляционный метод) и отсутствие перемешивания жидких фаз (динамический метод). [c.152]

    Б. Равновесия пар — жидкий раствор в системах с ограниченной взаимной растворимостью жидкостей. Если система образована из двух летучих ограниченно смешивающихся жидкостей, то при испарении такой двухфазной системы пар будет содержать оба компонента и находиться в равновесии с каждой из жидких фаз. Согласно правилу сосуществования фаз в гетерогенной системе две фазы, находящиеся порознь в равновесии с третьей фазой, равновесны между собой. Следовательно, оба раствора равновесны не только с паром, но и между собой. При этом химический потенциал каждого из компонентов во всех равновесных фазах одинаков, т. е. [c.395]

    Работа 2. Исследование равновесия жидкость — жидкость в двухкомпонентной системе с ограниченной растворимостью жидкостей [c.165]

    Рнс. 138. Равновесие пар — жидкость в системах с ограниченной взаимной, растворимостью жидкостей (Р, < Р> Pj) [c.397]

    Способность ограниченно смешивающихся жидкостей образовывать гетероазеотропы используется для разделения азеотропных смесей в системах с неограниченной взаимной растворимостью компонентов. Так, азеотропная-смесь в системе пиридин — вода, содержащая 57% пиридина и кипящая при 365 К, методом перегонки не может быть разделена на чистые компоненты. Однако если к такой азеотропной смеси добавить бензол, который образует с водой гетероазеотроп, кипящий при более низкой температуре (342 К), то при перегонке водных растворов пиридина в присутствии бензола можно получить чистый пиридин, а вода вместе с бензолом в виде гетероазе-отропа перейдет в дистиллят. Диаграмма на рис. 139 отвечает системе, в которой гетероазеотроп не образуется. В такой системе во всем интервале концентраций пар богаче жидкости компонентом Б, имеющим более низкую температуру кипения при заданном давлении. Такие системы характеризуются тем, что состав пара (точка О), равновесного с жидкими растворами (точки С и D), не является промежуточным между составами жидких растворов. Кроме того, температура равновесной трехфазной системы не будет самой низкой температурой, при которой существует равновесие пар—жидкость. Систему с ограниченной взаимной растворимостью компонентов второго типа перегонкой можно разделить на два чистых компонента. Примерами систем данного типа могут служить системы вода — фенол, гексан — анилин, вода — никотин, бензол — ацетамид, метанол — тетраэтил-силан и др. [c.398]


    При изучении равновесия пар — жидкость в системах с ограниченной взаимной растворимостью жидкостей пользуются диаграммам состояния давление — состав (рис. 138, а и 139, а) и температура кипения — состав (рис. 138, б и 139, б). Каждая диаграмма кривыми пара и жидкости делится на ряд областей / — область пара // — область первого жидкого раствора (кривая ВЬА) III — область, второго жидкого раствора (кривая АЬВ) IV — область пара и первого жидкого раствора V — область пара и второго жидкого раствора VI — область двух жидких растворов. [c.397]

    Инвариантному равновесию трех фаз отвечают точки, лежаш,ие на участке а Ь линии фиксированного общего давления а и Ь — составов растворов 1 ]л2 с — состава с пара над растворами / и 2. В соответствии с правилом фаз давления р, рд и рв постоянны во всей области ub ограниченной растворимости и не зависят от содержания компонентов в системе, следовательно, от количеств растворов 1 н 2. Это означает, что температура кипения двухфазной жидкой смеси тоже будет постоянной, пока в процессе выкипания не исчезает один жидкий слой. Двухфазная смесь жидкостей, нераздельно кипящая при постоянной температуре, называется гетероазеотропом. [c.193]

    Большинство веществ обладает ограниченной растворимостью в воде и других растворителях. Поэтому в ионообменных реакциях равновесие часто сдвигается в результате образования осадка. На смещение равновесия в растворах электролитов влияют многие факторы, при этом изменение давления незначительно влияет на смещение равновесия из-за малой сжимаемости жидкостей. Изменение температуры в равновесной системе позволяет повышать или понижать растворимость вещества, а также вызывать изменение степени диссоциации слабого электролита. Важнейшим фактором, позволяющим смещать положение равновесия в растворах электролитов, является изменение концентрации ионов в растворе. [c.44]

    Равновесие между двумя жидкими растворами изучали в 15600—56251. Первыми были работы Н. А. Шилова и Л. К. Ле-пинь [5600—56021 последующие исследования охватывают как системы ограниченно растворимых жидкостей, так и распределение вещества (веществ) между жидкими фазами. Примером первых могут служить [5607, 5608, 5609], примером вторых [5603—56061. В [5610—5613] разработан метод проверки и корреляции данных по равновесию жидкость — жидкость в тройных системах. Вопросы теории расслаивания в применении к определенным группам объектов рассмотрены в [5625—56351. Так, в [5628—56311 рассмотрено распределение данного вещества между металлом и щлаком, причем в основу анализа положена ионная теория шлаков, разработанная О. А. Есиным. [c.51]

    На рнс. 10.6 изображен один из типов диаграмм температура кипения — состав бинарной жидкой смеси ограниченно растворимых жидкостей при Р = onst. В зависимости от температуры и общего состава смеси в системе может существовать либо одна жидкая фаза (раствор Ж или Жг), либо обе жидкие фазы одновременно. Равновесие жидкости и насыщенного пара при кипении однофазной жидкости характеризуется в этом случае интервалом температур, в котором жидкость и пар изменяют свой состав. Например, жидкость, характеризующаяся точкой I, начинает кипеть при Ti и заканчивает при Т2, при этом состав жидкости изменяется по линии I—2, а состав насыщенного пара по 1 —2. Количество насыщенного пара и равновесной жидкости определяется положением точки суммарного состава смеси по правилу рычага. [c.198]

    При исследовании равновесия между жидкостью и паром Б трехкомпонентных системах обычно стараются закономерно изменять состав жидкой фазы, так как это облегчает обработку и использование опытных данных. Чаще всего состав раствора изменяют таким образом, чтобы концентрация одного из компонентов оставалась постоянной (по сечению Жд= onst) или чтобы поддерживалось постоянным отношение концентраций двух компонентов (по секущей а з/а 2=соп81). Эти способы изменения состава показаны на рис. 34. Для систем с ограниченной взаимной растворимостью компонентов особый интерес представляет изменение состава раствора по кривой растворимости. [c.95]

    Большое внимание уделялось выяснению возможностей метода UNIFA при описании равновесий жидкость—жидкость и жидкость—жидкость—пар в разнообразных системах с ограниченной взаимной растворимостью компонентов при использовании обш их параметров модели (см. Приложение II) [297, 301, 306, 317]. [c.256]

    По модели UNIFA изучены равновесия жидкость—жидкость в различных системах как типа I (системы с одной парой ограниченно смешивающихся компонентов с критической точкой на кривой растворимости), так и типа II (системы с двумя парами ограниченно смешивающихся компонентов без критической точки). Некоторые примеры приведены на рис. VIII.3 и VIII.4. [c.257]

    Этерификация уксусной кислоты бутаиолом с целью получения бутилацетата протекает в четырехкомпонентной системе, характеризующейся ограниченной взаимной растворимостью компонентов. Для исследования разделения реакционной смеси и совмещенного реакционно-ректификациопного процесса этерификацин [1] необходимы, в частности, данные по растворимости и фазовому равновесию жидкость — жидкость. [c.109]

    По взаимной растворимости бинарные жидкие смеси можно разделить на три группы 1) растворимые одна в другой во всех отношениях (этиловыйспирт—вода) 2) практически не растворимые (бензол — вода) 3) ограниченно растворимые одна в другой (фенол — вода, никотин — вода, эфир — вода). Взаимная растворимость ограниченно растворимых жидкостей изменяется с температурой она может увеличиваться (фенол — вода) или уменьшаться (триэтиламин — вода) при повышении температуры. Температура, при которой жидкости растворяются во всех отношениях, называются критической температурой. Зависимость взаимной растворимости ограниченно смешивающихся жидкостей от температуры лучше всего выразить графи-ч ки в виде диаграммы растворимости. На рис. 13 приведена диаграмма растворимости системы фенол — вода. На абсциссе откладывают состав смеси в весовых или мольных процентах, на ординате — температуру. Если к воде при комнатной температуре (20°) добавить избыток фенола, то раствор станет насыщенным при данной температуре и смесь разделится на два слоя. Каждый из слоев после установления равновесия представляет со- [c.67]

    При ограниченной растворимости двух жидкостей друг в друге система состоит из двух фаз фазы насыщенного раствора второго компонента в первом и фазы насыщенного раствора первого компонента во втором. Такие растворы в условиях равновесия называются сопряженными. При умеренных давлениях составы сопряженных растворов зависят от температуры. При повышении температуры, как правило, растворимость компонентов друг в друге повышается (нногда аналогичное явление наблюдается и при понижении температуры). Для таких систем существует температура, при которой система из гетерогенной переходит в гомогенную. Температура, при которой система становится гомогенной, называется критической [c.177]

    Дальнейший прогресс техники исследования равновесия между жидкостью и паром в системах, образованных компонентами с ограниченной взаимной растворимостью, связап с применением для анализа смесей газо-жидкостпой хроматографии или других методов анализа, для которых требуется незначительная проба. В связи с незначительным количеством смеси, нужной для анализа, появляется возможность непосредственно анализировать паровую фазу. Приборы для исследования равновесия между жидкостью и паром, основанпые па использовании газожидкостной хроматографии для определения состава смесей, описаны ниже. Они в равной мере применимы для систем с одной или двумя жидкими фазами. В последнем случае важно обеспечить хорошее перемешивание жидких фаз для достижения равновесия между ними и паром. Эти методы позволяют резко сократить расход веществ и затрату времени на исследование по сравнению с другими методами. [c.30]


Смотреть страницы где упоминается термин Равновесия жидкость — жидкость в системах с ограниченной растворимостью жидкостей: [c.216]    [c.95]    [c.71]    [c.100]    [c.23]   
Смотреть главы в:

Практикум по физической химии Изд 5 -> Равновесия жидкость — жидкость в системах с ограниченной растворимостью жидкостей




ПОИСК





Смотрите так же термины и статьи:

Жидкости ограниченно растворимые

Жидкость растворимые

Равновесие в системе жидкость жидкость

Равновесие жидкость пар

Равновесие жидкость пар в системах

Равновесие ограниченное

Равновесие системе

Равновесия в системах с ограниченно растворимыми жидкостями

Растворимость жидкостей

Растворимость жидкости в жидкости

Растворимость ограниченное

Растворимость равновесие

Система с ограниченной растворимостью

Системы газ жидкость

Системы жидкость жидкость

Системы из жидкостей с ограниченной растворимостью



© 2025 chem21.info Реклама на сайте