Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Некоторые применения спектроскопии в органической химии

    НЕКОТОРЫЕ ПРИМЕНЕНИЯ СПЕКТРОСКОПИИ В ОРГАНИЧЕСКОЙ ХИМИИ [c.165]

    Введение. Инфракрасная область спектра была открыта около 1800 г. английским астрономом Уильямом Гершелем, который обнаружил, что термометр, помещенный за красным краем солнечного спектра, показывает заметное повышение температуры. Однако понадобилось свыше ста лет, прежде чем американский физик Кобленц опубликовал в 1905 г. обширный обзор инфракрасных спектров многих классов органических и неорганических соединений и рассмотрел соответствие между спектрами и структурой. Если бы эта превосходная работа была продолжена тогда же, то она, несомненно, изменила бы весь ход развития органической химии на деле широкое признание больших возможностей применения инфракрасной спектроскопии для решения структурных и аналитических задач в органической химии пришло только в начале 40-х годов. В это время впервые были созданы автоматические регистрирующие приборы их применили в работе над некоторыми важными проблемами военного времени, такими, как анализ авиационных топлив, синтетических резин и волокон, выяснение структуры пенициллина. Вскоре появились относительно недорогие, но достаточно хорошие коммерческие приборы, производство которых сильно выросло после 1950 г., и в настоящее время едва ли найдутся лаборатории, работающие с органическими веществами и не имеющие подобных приборов. Как и УФ- и ЯМР-методы, инфракрасная спектроскопия является неотъемлемой частью научной работы в органической химии, и можно сказать, что кювета для образца и спектрометр заменили пробирку и бунзеновскую горелку в руках химика. [c.116]


    Можно сравнительно просто определить, какую природу — химическую (т. е. обусловленную пигментом) или физическую (обусловленную структурой) — имеет данный цветовой эффект. Идентификация и характеристика пигмента обычно является стандартной задачей в органической химии. В последующих главах первой части этой книги приведены основные химические свойства наиболее крупных групп природных пигментов. Гораздо более сложной является проблема взаимодействия молекул пигмента с их ближайшим микроокружением, напри-ме с белками в мембранах. Применение сложных современных физико-химических методов, таких, как резонансная рамановская спектроскопия, линейный и круговой дихроизм и ядерный магнитный резонанс, позволяет решить эту проблему, а также получить информацию о молекулярных изменениях, которые претерпевают некоторые пигменты при их функционировании. Вторая часть этой книги представляет собой обзор функций природных пигментов как в роли окрашивающих агентов, так и в роли участников гораздо более сложных процессов, таких, как фотосинтез, зрение и другие фотореакции, которые могут протекать за время порядка пикосекунд. [c.30]

    Другая особенность книги, заслуживающая специального рассмотрения, состоит в большом внимании, уделенном применению различных видов спектроскопии к проблемам органической химии. В этом отношении глава 2 вызвала особенно много споров — одним из читавших ее она понравилась некоторые считали, что ее следует перенести в приложение другие полагали, что ей вообще не место в учебнике, излагающем основы органической химии. Важность спектральных методов для изучения строения органических соединений не вызывает сомнений. Несмотря на все тревоги по этому поводу представителей старшего поколения, вполне правомерно снять спектр нового соединения прежде, чем определять его температуру плавления,— с помощью спектра может быть получено гораздо больше информации. Однако это не означает, что в начальный курс органической химии необходимо или даже желательно включать руководство по спектральным методам. Всегда существует предел, ограничивающий объем материала, и может оказаться неверным с педагогической точки зрения обучение студента вещам, которые не имеют для него в данный момент существенного значения. [c.11]

    Ионизационные потенциалы наряду с другими характеристиками веществ являются теми исходными величинами, которые необходимы физической органической химии для установления зависимости реакционной способности от структуры. Описано использование ионизационных потенциалов при анализе энергетики некоторых реакций в газовой фазе. Другие важные области применения остались вне рамок настоящего обзора здесь можно лишь упомянуть о некоторых из них. Особенно важны ионизационные потенциалы для исследований комплексов с переносом заряда. Такие комплексы интересны не только сами по себе как новый тип сложных органических молекул, но они имеют также большое и все возрастающее значение для интерпретации данных спектроскопии, свойств растворов и механизмов реакций Прочность связи в таких комплексах обусловлена частичным или полным переносом электрона от донора к акцептору. Ионизационный потенциал молекулы-донора — один из факторов, которые определяют энергию, необходимую для такого переноса (см. обзоры [3, 54]). [c.30]


    Другая особенность книги, заслуживающая специального рассмотрения, состоит в большом внимании, уделенном применению различных видов спектроскопии к проблемам органической химии. В этом отношении гл. 2 вызвала особенно много споров — одним из читавших ее она понравилась некоторые считали, что ее следует перенести в приложение другие полагали, что ей вообще не место в учебнике, излагающем основы органической химии. Важность спектральных методов для изучения строения органических соеди- [c.12]

    Хотя явление оптической активности известно давно [1], первыми спектральными методами, которые стали широко использоваться в органической химии, явились ультрафиолетовая и инфракрасная спектроскопия. Дисперсия оптического вращения и феноменологически родственный оптический круговой дихроизм только недавно привлекли внимание химиков и биохимиков и нашли широкое применение для решения аналитических, структурных и стереохимических проблем. Дисперсия оптического вращения (ДОВ) и круговой дихроизм (КД) — новые, очень важные физические методы, поскольку они помогают разобраться в широких аспектах, с которыми связаны многие области знания. Применение этих методов в современной науке очень велико и охватывает структурные и стереохимические проблемы в органической хилши (например, в химии природных соединений), конформационные проблемы в биохимии (спиральность белковых цепей), пространственные аспекты в неорганической химии и химии металлоорганических соединений (например, строение лигандов), а также такие фундаментальные проблемы, как обнаружение оптической активности в космическом пространстве (например, исследование метеоритов и т. д.). Эти оптические методы находятся в настоящее время в стадии развития, и исследование эффекта Коттона почти каждого прежде не изученного хромофора является важным вкладом в развитие стереохимии. Однако исследования в области ДОВ и КД встречают некоторые затруднения, из которых важно упомянуть два следующих. Первое — это технические трудности. В настоящее время возможны измерения в области 180—700 ммк, однако многие хромофоры поглощают ниже 180 ммк. Вторая, более существенная трудность даже когда с помощью имеющихся приборов удается исследовать оптически активный хромофор, иногда нелегко сделать структурные и стереохимические выводы из-за отсутствия теоретических обоснований (например, эффект Коттона, вызываемый п л -переходом в а,р-ненасыщенных кетонах). Отсюда вытекает настоятельная необходимость более [c.101]

    Дж. Бранд, Г. Эглинтон, Применение спектроскопии в органической химии. Изд. Мир , 1967. В книге имеется раздел с кратким изложением основ теории электронных спектров и глава, в которой описаны основные закономерности электронных спектров некоторых классов органических соединений. [c.96]

    Существенную роль в характеристике органических соединений играют спектры поглощения. Часть спектра электромагнитной радиации, соответствующая длине волны от 2-10 см до 150-10 см, наиболее полезна в этом отношении. Некоторые типы органических соединений поглощают в ультрафиолетовой и видимой частях спектра (рис. 1,1) при характерных длинах волн и интенсивностях, что обусловлено возбуждением менее прочно связанных электронов в молекулах. Почти все органические вещества поглощают в инфракрасной области, и интенсивность поглощения меняется с изменением длины волны, давая детальную картину, обычно используемую для характеристики или идентификации соединений. Поглощение в этой части спектра связано с вибрациями различных частей молекулы относительно друг друга. Замечательной особенностью таких спектров является то, что они не только дают способы узнать молекулу в целом, но также часто позволяют идентифицировать некоторые из ее частей. В гл. 28 подробно описывается применение спектроскопии в органической химии. [c.21]

    Материал, положенный в основу данного обзора, тщательно подобран с точки зрения практической ценности для химика-органика, интересующегося применением методов ЯМР-спектроскопии к проблемам строения органических ч оединений. Некоторые области ЯМР не получили в обзоре освещения к их числу относятся проблемы ЯМР-спектроскопии твердых тел. Основное внимание уделено протонному резонансу, и лишь вкратце изложены результаты обширных исследований резонансов других ядер со спином /2 или ядер, обладающих квадру-польным моментом. Причина такого подбора материала совершенно очевидна в настоящее время именно в отношении высокоразрешающей протонной ЯМР-спектроскопии Жидкостей наиболее убедительно продемонстрирована самая общая применимость к решению тех проблем, с которыми сталкивается химик-органик. Несмотря на такой практический подход, обзор содержит значительные по объему разделы, посвященные теоретическим, а иногда и математическим аспектам метода. Это вытекает из убеждения автора в том, что использование ЯМР в химии уже теперь носит гораздо менее эмпирический характер, чем, скажем, инфракрасных спектров, и что в дальнейшем тенденция к устранению эмпиризма окажется еще более сильной. Не вызывает сомнения, что квалифицированное использование ЯМР требует более глубокого понимания основных принципов, чем любой другой спектроскопический метод из числа широко распространенных в органической химии. Физики, разработавшие теорию ЯМР-спектроскопии, сделали все возможное, чтобы их выводы и использованные Ими методы были понятны (другим физикам), поэтому вполне целесообразно затратить некоторые усилия, с тем чтобы изложить основы ЯМР-спектроскопии в доступной для химиков форме. В данном об зоре мы ограничимся изложением только тех вопросов теории которые имеют непосредственное отношение к установлении структуры соединений более полно физические принципы и математические аспекты ЯМР-спектроскопии изложены в превосходной книге Эндрю [5]. Отметим также обзорную статью Вертца [54] и опубликованные в последнее время монографии Робертса [55], Попла, Шнейдера и Бернстейна [117] и Джекмана (118]. [c.256]


    В химии сахаров, так же как и в других областях органической химии, ИК-спектроскопию применяют прежде всего для функционального анализа соединения —для характеристики функциональных групп и их взаимного расположения. Кроме того, с помощью ИК-спектра можно иногда получить некоторые сведения о структуре и стереохимии моносахаридной молекулы в целом. Наконец, ИК-спектроскопия может использоваться для установления идентичности или неидентичности двух образцов. Для решения каждой из этих задач приходится выбирать соответствующие экспериментальные условия. Так как моносахариды нерастворимы в растворителях, применяемых в ИК-спектроскопии ( I4, H I3, Sj), а использование воды в качестве растворителя требует специальной сложной техники снятие ИК-спектров в растворе производится только для изучения замещенных производных моносахаридов. Для самих моносахаридов, а также для их производных снятие спектров обычно проводится в вазелиновом масле или в таблетках, состоящих из образца и бромида калия. Каждый из этих методов не свободен от принципиальных недостатков, а их применение связано с некоторыми техническими трудностями. [c.58]

    Важно то, что в некоторых рассматриваемых учебниках (А. Н. и Н. А. Несмеяновых, Дж. Робертса и М. Казерио) материал об основных классах органической химии представлен в неразрывной связи с данными их физико-химических исследований методами инфракрасной, ультрафиолетовой и ЯМР-спектроскопии. Этим методам наряду с газо-жидкостной хроматографией, которая прочно заняла ведущее место в химических лабораториях заводов, принадлежит большое будущее. Они станут основными методами физико-хилмического анализа состава, количества примеси, качества выпускаемой и потребляемой химической продукции. Поэтому желательно, чтобы учащиеся ПТУ, в будущем работники химических производств, ознакомились с сутью и применением этих физико-химических методов в органической химии. [c.15]

    Ифракрасная область спектра была открыта около 1800 г. английским астрономом Уильямом Гершелем, который обнаружил, что термометр, помешенный за красным краем солнечного спектра, показывает заметное повышение температуры. Однако понадобилось свыше ста лет, прежде чем американский физик Кобленц опубликовал в 1905 г. обширный обзор ИК-спектров моногих классов органических и неорганических соединений и рассмотрел соответствие между спектрами и структурой. Широкое признание больших возможностей применения ИК-спектроскопии для решения структурных и аналитических задач в органической химии пришло только в начале 40-х годов. В это время были созданы автоматические регистрирующие приборы (первый из ИК-спектрометров был собран в Мичиганском университете, США, в 1937 г.), которые применяли в работе над некоторыми важными проблемами военного времени, такими, как анализ авиационных топлив, синтетических резин и волокон, выяснение структуры пенициллина [2, 4]. [c.267]

    Предмет стереохимии так же стар, как сама органическая химия. Открытие Био оптического вращения предшествовало известному синтезу мочевины Вёлера, а классические стереохимические исследования Пастера совпадали по времени с классическими работам Кекуле, посвященными структуре молекул. Несмотря на почтенный возраст предмета, интерес к нему заметно возрос после окончания второй мировой войны. Определение абсолютной конфигурации, выяснение конфигурации большого числа важных природных соединений и стереонаправленный синтез многих из них, создание стереорегулярных полимеров с явно выраженными полезными физическими свойствами — таковы некоторые из многих примеров последних достижений в этой области. Конфор-мационный анализ позволил систематически интерпретировать многие химические данные, а также предсказать новые факты. Последним по счету, но не по значению, является следующее обстоятельство. Годы после 1940 г. были годами замечательных успехов в создании новых физических приборов и их все более широкого практического применения, в результате чего такие методы, как ультрафиолетовая, инфракрасная и ЯМР-спектроскопия, а в самое последнее время — измерение дисперсии оптического вращения, стали играть чрезвычайно важную роль в решении вопросов стереохимии. [c.7]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Проблема исследования состава природных п сточных вод ввиду ее сложности, особенно в части органического анализа, должна решаться на основе двух основных тенденций развития современной аналитической химии разделение веществ перед их определением и разделение суммы сигналов, получаемой при исследовании смеси веществ. В настоящем сообщении будут рассмотрены перспективы некоторых спектральных методов анализа спектрофотометрии, ИК-спектроскопии, ЯМР, рентгено-электрон-ной спектроскопии и ЭПР. Применение масс-спектроскопии, флуо-риметрии настолько разнообразно и широко, что краткое обсуждение их вряд ли целесообразно. [c.243]

    Методы спектроскопии широко используются при проведении научных исследований в области химии органических нитросоединений. Опубликовано довольно много работ, освещающих применение спектральных методов для решения структурных и аналитических проблем, интересных для химика-органика. Кроме того, во многих работах рассматриваются некоторые специальные вопросы влияние среды и заместителей, водородные связи, кето-енольное равновесие, кислотно-основное равновесие. Нитросоединения также исследовались методом ЯМР на ядрах Н, и При изучении анион-радикалов, легко образующихся при восстановлении нитросоединений, широко использовался метод ЭПР. В этой главе детально рассматриваются различные аспекты спектроскопии питросоединений, причем особенное внимание уделяется вопросам, представляющим интерес для химиков-органиков. [c.60]


Смотреть страницы где упоминается термин Некоторые применения спектроскопии в органической химии: [c.4]    [c.2]    [c.4]   
Смотреть главы в:

Физические методы органической химии Том 4 -> Некоторые применения спектроскопии в органической химии




ПОИСК





Смотрите так же термины и статьи:

Органическая химия

ЭПР-спектроскопия применение



© 2025 chem21.info Реклама на сайте