Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство к субстратам

    Чтобы закончить с этой методической частью, следует добавить, что существуют и другие обычные, традиционные методы анализа множественных форм ферментов или белков и особенно всевозможные технические приемы хроматографии, иммунохимии или методы, основанные на биохимических свойствах ферментов (кинетика, сродство к субстрату, наличие кофакторов, стабильность при заданных pH или температуре). Однако очевидно, что благодаря весьма неплохой разрешающей способности, возможности одновременно анализировать много образцов (иногда в ничтожно малых количествах) и характеризовать молекулы с одинаковой активностью, электрофорез (и его основные разновидности — в градиенте акриламида и электрофокусирование) остается предпочтительным методом для изучения биохимического полиморфизма в том смысле, как он определяется. [c.41]


    Отбор на чашках с агаром основан на том, что часть организмов отвечает на воздействие по принципу все или ничего . Колонии мутантов растут, а диких клеток — нет. Однако при-получении промышленных штаммов, особенно предназначенных для использования в длительных процессах ферментации, нередко стремятся получить для конкретных условий относительно небольшие различия в скорости роста. В этом случае отбор происходит при непрерывном культивировании. В хемостатах при длительном выращивании культура все время находится в экспоненциальной фазе роста, и это позволяет выделять даже те мутанты, у которых сродство к субстрату, удельная скорость роста или устойчивость к токсическому действию высоких концентраций субстрата или продукта лишь немного превышает исходный уровень. [c.299]

    Адсорбционный механизм регуляции активности гексокиназы скелетной мышцы (И изозим гексокиназы) реализуется в повышении каталитической эффективности фермента вследствие нековалентной иммобилизации на митохондриальных мембранах. Связанная форма фермента по сравнению со свободной обладает большим числом оборотов, повышенным сродством к субстрату глюкозе и менее чувствительна к ингибирующему действию продукта реакции глюкозо-6-фосфата. Связь фермента с наружной митохондриальной мембраной осуществляется преимущественно с участием фосфолипидного компонента мембран и регулируется внутриклеточными метаболитами. Так, Mg + и глюкоза являются адсорбирующими фермент реагентами, АТФ и глюкозо-6-фос-фат (Г-6-Ф) солюбилизируют фермент, контролируя тем самым соотношение разных по каталитической эффективности форм фермента [c.374]

    Как правило, эти особенности объясняются наличием у фермента четвертичной структуры и взаимодействием субъединиц. Тем самым, поведение фермента кооперативно — сродство к субстрату и каталитическая активность данной субъединицы (протомера) зависят от того, в каких состояниях находятся остальные субъединицы — связали они субстрат или нет. [c.199]

    Кислотные красители-гл. обр. соли сульфокислот, реже-карбоновых, а также анионные комплексы нек-рых красителей с металлами, преим. с Сг и Со основные красители-сот орг. оснований. В водных р-рах кислотные К.с. диссоциируют с образованием цветных анионов, основные-цветных катионов. Обладают сродством к субстратам амфотерного характера (шерсть, натуральные шелк и кожа, синтетич. полиамиды) основные К.с., применяемые для крашения полиакрилонитрильного волокна (наз. катионными красителями) обладают сродством к субстратам кислотного характера. Окрашивают из водных р-ров, вступая в солеобразование с имеющимися в молекулах указанных субстратов основными или кислотными фуп-пами соответственно. Удерживаются на субстрате гл. обр. с помощью ионных связей. К целлюлозе сродства не имеют, но основные К.с. могут окрашивать целлюлозные материалы после предварит, обработки их ( протравления ) в-вами кислотного характера, напр, таннинами, фенольными смолами (т. наз. крашение по танниновой или др. протравам). [c.493]


    В клетки животных и бактерий активно транопортируются аминокислоты [38, 39]. У Е. oli существуют специфические системы переноса почти для каждой аминокислоты, а для некоторых аминокислот таких систем даже несколько. Обычно наряду с системой, для которой характерны высокое сродство к аминокислоте и способность перекачивать ее из областей с очень низкой концентрацией, существуют параллельно функционирующие системы с рецепторами, не обладающими столь высоким сродством к субстрату. Системы транспорта аминокислот, а также сахаров достаточно хорошо исследованы у бактерий [38, 45, 46]. В одной из таких систем, детально изученной с помощью химических и генетических методов, процесс проникновения различных сахаров (в том числе альдогексоз) внутрь клетки сопряжен с распадом фосфоенолпирувата (табл. 3-5). Судя по всему, сахара при функционировании этой системы проходят через внутреннюю мембрану в виде фосфатных эфиров (групповая транслокация) [46а, 46Ь]. В другой системе транспорт аминокислот и лактозы сопряжен с системой переноса электронов (гл. 10) в связанной с мембраной окислительно-восстановительной цепи. Считают, что эта система не зависит от синтеза АТР. [c.359]

    Протравные красители содержат заместители, способные образовывать устойчивые комплексы с металлами. Не обладают достаточным сродством к целлюлозе, но закрепляются на ней по протраве солями металлов (напр., Сг , Ре " ) вследствие образования нерастворимых внутрикомплексных соед. (протравные К.с. для хлопка). При наличии кислотных групп обладают сродством к субстратам амфотерного характера и окрашивают их подобно кислотным К. с., причем при обработке солями металлов (гл. обр. Сг +) также образуется комплекс (протравные для шерсти, или хромовые К.с.). [c.493]

    Таким образом, доля активированных молекул и, следовательно, скорости реакции зависят от концентрации комплексообра-зователя (Е], а также от его сродства к субстрату, определяемому через Kes- Если Ке больше К и не зависит от es, то чем сильнее связывание субстрата, тем выше скорость реакции. [c.302]

    Один из участников реакции обычно рассматривается в качестве реагента . Потребность его в электронах может быть также положена в основу классификации реакций. Если реагент содержит свободную или п-электронную пару, то он может взаимодействовать с веществом ( субстратом ), которое само обладает электронным дефицитом. В этом случае реагент является нуклеофильным ( ищущим ядро ), и соответствующее взаимодействие называется нуклеофильной реакцией. Наоборот, если реагент с электронным дефицитом проявляет преимущественное сродство к субстрату с избытком электронов, он является электрофильным ( ищущим электроны ), а соответствующее взаимодействие называется электрофильной реакцией. Наконец, можно классифицировать реакции, основываясь на том, сколько молекул изменяют свои ковалентные связи в [c.101]

    Сродство к субстрату и рост микроорганизмов [c.410]

    Сигмоидная форма кривой указывает на то, что фермент построен из субъединиц, между которыми существуют кооперативные взаимодей-ст]вия. Очевидно, связывание субстрата с каталитическим центром одной из субъединиц фермента повышает сродство к субстрату других участков связывания в той же молекуле. Регуляторные ферменты состоят из двух или более, чаще всего из четырех, субъединиц. [c.487]

    В основу обеих моделей положено представление о том, что ферменты могут существовать в различных формах-в активной форм (с высоким сродством к субстрату) и в неактивной (с малым сродством к субстрату), В каком соотношении между собой будут находиться разные формы фермента, зависит от наличия и концентрации лигандов (молекул субстрата, активаторов и ингибиторов). Разница между гипотезами касается того, как происходит конформационное изменение. [c.488]

    Как видно, из десяти гипотетических сайтов лишь два сайта — второй от каталитического участка по направлению к восстанавливающему концу субстрата и второй по направлению к невос-станавливающему концу — проявляют сродство к мономерным остаткам субстрата. Остальные сайты проявляют или минимальное, или даже негативное (с точностью до ошибки эксперимента) сродство к субстрату. Отсюда был сделан вывод, что сорбционный участок активного центра эндоксиланазы состоит из четырех сайтов (включая два, прилегающие к каталитическому участку). [c.61]

    Как показывают результаты картирования активных центров карбогидраз, в большинстве случаев сайт слева от каталитического участка характеризуется весьма невыгодной энергетикой связывания с мономерным остатком субстрата. Напротив, следующий сайт — справа от каталитического участка — обычно характеризуется сильным сродством к субстрату. Не исключено, что эти особенности взаимодействия полимерных субстратов с активными центрами деполимераз имеют прямое отношение к искажению субстрата поблизости от его реакционного центра при каталитическом расщеплении. Однако, поскольку данные по картированию активного центра получены в определенной степени спорными методами (особенно в отношении сайтов, прилегающих к каталитическому участку), в настоящее время еще рано делать какие-либо обобщения на этот счет. Наконец, сами предположения об искажении реакционного центра полисахаридных субстратов весьма спорны и при рассмотрении реакций, катализируемых лизоцимом, как показано в разделе Б, нуждаются в тщательной проверке. [c.75]


    Высокое термодинамическое сродство к субстрату является существенным, но не определяющим свойством фермента. Установление механизма распада перекиси водорода дало возможность найти для разных катализаторов истинные значения энергии активации Е и предэкспоненциального множителя к . Огромная активность каталазы и других ферментов целиком обусловливается сильным снижением энергии активации по сравнению с другими типами катализаторов ни один из неорганических катализаторов не способен проводить распад Н2О2 с активационным барьером ниже 46 кДж (платина), каталаза же проводит его при вдвое меньшей высоте энергетического барьера 23 кДж. [c.116]

    Для того чтобы создать рецептор, настроенный на более крупные молекулы субстратов, а не только на простые ароматические соединения, был синтезирован аналог 227, в котором фенютеновые остатки в соединениях 226 заменены нафтилсновыми 134с]. В результате этой модификации лиганд 227 получил способность образовывать комплексы с такими крупными молекулами, как стероиды, одновременно с резким снижением его сродства к субстратам меньшего размера, Нам кажется важным подчеркнуть это обстоятельство при переходе от 226 к 227 увеличение размеров внутренней полости лиганда, его связывающего сайта, — это не просто возрастание объема контейнера , в который теперь можно заложить вместо одной маленькой молекулы одну большую или несколько маленьких, а именно изменение характера селективности рецептора (в большом контейнере прочно удерживаются крупные молекулы, а мелкие из него вываливаются ), И дело здесь не просто в размерах — видимо, не менее важно и определенное структурное соответствие субстрата рецептору. Так, при варьировании структуры стероидного субстрата константа связывания с рецептором 227 может изменяться в пределах двух-трех порядков величины. Таким образом, этот лиганд может служить эффективным инструментом для избирательного связывания определенных стероидов и выделения их из смесей. [c.481]

    Скорость ферментативной р-щт не всегда подчиняется ур-нию (1). Один из часто встречающихся случаев - участие в р-ции аллостерич. ферментов (см. Регуляторы ферментов), для к-рых зависимость степени насыщения фермента от [8]о имеет негиперболич. характер (рис. 3). Это явление обусловлено кооперативностью связывания субстрата, т. е. когда связывание субстрата на одном из участков макромолекулы фермента ухичивает (положит, кооперативност или 5Мвньшает (отрицат. кооперативность) сродство к субстрату др. участка. [c.82]

    Фермент широко распространен в тканях млекопитающих и представлен двумя изозимами, пространственно разобщенными в клетке. Один изозим локализован в цитозоле, другой связан с митохондриальной фракцией. Изозимы существенно различаются по аминокислотному составу, физико-химическим свойствам, зависимости активности от pH среды и, что особенно важно с физиологической точки зрения, по кинетическим свойствам. Различное сродство к субстратам реакции ставит изозимы фермента в разные условия в отношении доступности субстратов прямой и обратной реакций. Этим определяется бифункциональность поведения аспартатаминотрансферазы в печени реакция, катализируемая митохондриальным изозимом, может быть сдвинута от состояния равновесия в сторону образования а-кетоглутарата, и поэтому может быть связана с функционированием цикла Кребса и цикла мочевины. Наоборот, цитоплазматический изозим способствует образованию щавелевоуксусной кислоты, т. е. связан с функционированием глюконеогенеза. [c.351]

    Состав и соотношение форм И. (спектр И.) изменяется в зависимости от их локализации в органах и тканях организмов одного вида и даже в разных субклеточных органеллах одной и той же клетки. На спектр И. оказывает влияние разное физиол. состояние организма и патологич. процессы, происходящие в нем. Поскольку И. различаются по свои.м св-вам (оптимуму pH, активации ионами, по сродству к субстратам, ингибиторам, активаторам, кофакторам), то характер их распределения отражает регуляторные механизмы, контролирующие метаболизм. Так, напр., лактатдегидрогеназа представлена в организме человека и животных пятью формами, каждая из к-рых представляет собой тетрамер, состоящий из субъединиц двух типов (а и Р) в разных соотношениях. В сердце и печени представлена в осн. форма 04, а в мышцах-Р . Первая ингибируется избытком пировиноградной к-ты и поэтому преобладает в органах с аэробным типом метаболизма, вторая не ингибируется избытком этой к-ты и преобладает в мышцах с высоким урювнем гликолиза. О важной роли И. в тонкой регуляции метаболич. процессов свидетельствует также изменение их спектра под влиянием разл. воздействий и физиол. состояний (охлаждение, гипоксия, денервация и др.). [c.202]

    O.K. обладают сродством к субстратам амфотерного характера (шерсть, натуральные щелк и кожа, синтетич. полиамидные волокиа) окрашивание производят из водных р-ров красители удерживаются на волокне ионными связями. О. к., применяемые для крашения полиакрилонитриль-иого волокна, выделены в отдельною группу т. наз. катионных красителей. К целлюлозным волокнам О.к. сродством не обладают, ио мог т окрашивать их после предварит, обработки волокон протравами (см. Протравные красители), к-рые образуют с О. к. нерастворимые в воде соединения. [c.421]

    По хл.-бум, и вискозным тканям печатают преим. кубовыми красителями, активными красителями, кубозолями, компонентами, образующими красители на волокне, и пигментами для вискозных тканей используют также в небольшом кол-ве прямые красители с закреплением дициандиамидом. Сернистые красители, широко применяемые в крашении целлюлозных тканей, для П. не применяются. По льняным тканям, а также по хл.-бум. и вискозным трикотажным полотнам печатают активными и кубовыми красителями, а также пигментами по шерстяным тканям-активными и кислотными красителями по ацетатным, триацетатным, полиэфирным тканям и трикотажу - только дисперсными красителями по полиамидным - кислотными, активными и изредка дисперсшми красителями по полиакрилонитрильным-ка/ииоииы.ии красителями. Наиб, универсальны для п. на всех текстильных материалах пигменты, к-рые не имеют сродства к субстратам и фиксируются вместе с загустителе.м с по.мощью спец. в-ва-фиксатора (связующее в-во), что исключает промывку. [c.503]

    Связывающие белки подошли бы на роль подвижных переносчиков в процессе облегченной диффузии, однако большая часть выделенных белков принадлежит, по-видимому, к системам активного транспорта, и их функция в процессах переноса до сих пор окончательно не установлена. Согласно одному из предположений, связывающий белок обладает сильным сродством к транспортируемому веществу (субстрату) и прочно связывается с ним на наружной поверхности летки. Образовавшийся комплекс белок—субстрат далее диффундирует к внутренней i TopOHe мембраны. Здесь в результате процесса, сопряженного с самопроизвольно протекающей экзергонической реакцией, например с гидролизом АТР, конформация бел1ка меняется таким образом, что его сродство к субстрату уменьшается. В результате транспортируемое вещество переходит в клетку, а связывающий белок диффундирует обратно к наружной поверхности. Там его конформация возвращается к исходной, вероятно, под влиянием химических воздействий. [c.359]

    Для многих ферментов модель Моно и др. оказывается слишком упрощенной, и для анализа равновесного связывания необходимо применять более общий подход (гл. 4). Следует, однако, иметь в виду, что наряду с /(-системами существуют У-системы, в которых аллостернче-ский эффектор вызывает изменение максимальной скорости [см. схему (6-47)], а иногда и обоих кинетических параметров одновременно (максимальной скорости и сродства к субстрату). [c.38]

    Изоферменты, или изоэнзимы,— это множественные формы фермента, катализирующие одну и ту же реакцию, но отличающиеся друг от друга по физическим и химическим свойствам, в частности по сродству к субстрату, [c.126]

    Изоэимы (изоферменты) — множественные формы фермента, отличающиеся друг от друга по сродству к субстрату, по максимальной активности или по регуляторным свойствам. [c.117]

    Автолизины (ферменты, расщепляющие клеточную стенку) существуют в клетке в латентной и активной форме. Активная возникает в результате процессингового протеолиза. В латентной форме автолизины рассеяны в области ЦПМ, активируясь, они приобретают сродство к субстрату и перемещаются в материал клеточной стенки. У пролиферирующих клеток бактерий местом локализации активных форм автолизинов является район образования септы, у дрожжей - почки, у апикально растущих микроорганизмов - конец гифы. Именно поэтому при индукции автолиза первичные повреждения клеточных стенок наблюдаются в местах образования перегородок, перетяжек. Автолизины в активной форме перемещаются от одного участка клеточной стенки к другому в продольном (от ЦПМ наружу) и поперечном (от экватора к полюсам) направлениях, невидимому, вследствие образования новых слоев и наращивания новых поперечных участков в местах деления клетки. [c.82]

    Обсуждается и другая форма активации автолизинов, осуществляющаяся при участии молекулярного шаперона - белка, специфически соединяющегося с автолизином в эквимолярном соотношении и повышающего его сродство к субстрату, что в несколько раз увеличивает активность фермента. [c.83]

    ОПТИЧЕСКИ ОТБЕЛИВАЮЩИЕ ВЕЩЕСТВА (оптические отбеливатели), бесцветные флуоресцирующие орг. соед., напр, производные стильбена, оксазола, имидазола, поглощающие УФ излучение (X 300—400 нм) и преобразующие его в видимое, преимущественно фиолетовое и голубое (X 400—500 нм). О. о. в. должны флуоресцировать с высоким квантовым выходом, излучать в той же области спектра, в к-рой поглощают содержащиеся в отбеливаемом субстрате загрязнения, и равномерно распределяться в субстрате, не образуя крупных мол. агрегатов, снижающих эффект белизны. Подобно красителям, О. о. в. должны обладать хим. сродством к субстрату (иногда их называют белыми красителями). В отличие от красителей, для них, однако, существует оптимум концентрации, превышение к-рого приводит к ослаблению или даже полному подавлению флуоресценции. На эффективность О. о. в. влияют также отражат. способность субстрата (особенно в ближней УФ области) и содержащиеся в нем в-ва, способные поглощать УФ излучение или гасить флуоресценцию (напр., соли тяжелых металлов). [c.412]

    ЭФФЕКТОРЫ ФЕРМЕНТОВ, взмевягот скорость ферментативной р-ции. Различают ингибиторы (снижают скорость) и активаторы (повышают скорость). Конкурентные ингибиторы уменьшают константу Михаэлиса (см. Ферментативных реакций кинетика), неконкурентные — макс. скорость р-ции. Ингибиторы смет, типа действуют по обоим механизмам одновременно. Активаторы влияют, как правило, на макс. скорость р-ции. Для ферментов, состоящих из неск. субъединиц, Э. ф. часто влияют на сродство фермента к субстрату (аллостерич. Э. ф.). Прн этом связывание Э. ф. на одной субъединице может повышать или понижать сродство к субстрату др. субъединицы. Это проявляется в изменении характера зависимости скорости р-ции (или ф-ции насыщения фермента субстратом) от концентрации субстрата (появление З-образной или др. типов негипербо-лич. зависимости). Э. ф. могут быть аналоги субстратов (налр., производные.О-аминокислот — ингибиторы протеолитич. ферментов), ионы металлов, мн. анионы (Р , СЫ и др.). Формально Э. ф. является Н+, т. к. изменение pH таеды влияет на скорость ферментативной р-ции. Эхинопсин (М-метил-4-хинолон), хиноли-новый алкалоид, содержащийся в семенах О [c.724]

    Фермент имеет особое сродство к субстратам, в которых боковая цепь К содержит ароматический радикал, такой, как. СН2С6Н5 или СН2С6Н4ОН. [c.653]


Смотреть страницы где упоминается термин Сродство к субстратам: [c.64]    [c.412]    [c.724]    [c.385]    [c.378]    [c.32]    [c.36]    [c.38]    [c.176]    [c.425]    [c.123]    [c.191]    [c.55]    [c.49]    [c.108]    [c.154]    [c.166]   
Смотреть главы в:

Фермент пероксидаза Участие в защитном механизме растений -> Сродство к субстратам




ПОИСК





Смотрите так же термины и статьи:

Измерение сродства между ферментом и субстратом

Изоферменты сродство к субстратам

Механизмы влияния температуры на сродство ферментов к субстратам

Основные механизмы влияния температуры на сродство ферментов к субстратам

Растения и сродство к субстрату

Роль изоферментов, различающихся по сродству к субстратам, в температурной адаптации

Рост микроорганизмов сродство к субстрату

Сродство

Сродство фермента к субстрату

Сродство фермента к субстрату, мера

Субстрат

Температурная компенсация сродство с субстратом

Физиологические концентрации субстратов близки к величинам Км Модуляторы обычно изменяют сродство фермента к субстрату, а I не значения Ушах

Функциональное значение высоких и низких величин сродства между ферментом и субстратом



© 2025 chem21.info Реклама на сайте