Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические повышенном давлении

    Как уже было сказано, главными параметрами, определяющими конкретную технологическую схему жидкофазного каталитического крекинга, являются сырье и катализатор. Учитывая это, мы провели исследования по подбору достаточно эффективного природного катализатора и сырья с учетом фракционного и углеводородного состава. Мы исходили не только из технологических преимуществ жидкофазного процесса, но также из соображений сокращения расхода катализатора за счет создания условий интенсивного контакта между катализатором и жидкой фазой сырья и возможности более избирательно направить действие катализатора на процессы крекинга и гидрирования, подавив в той или иной степени процессы дегидрирования парафинов и нафтенов и деалкилирования ароматических углеводородов путем повышения давления. [c.126]


    В технологической взаимозависимости работы обеих установок. С увеличением количества газа, образующегося при крекинге, необходимо вводить в работу дополнительный компрессор на абсорб-ционно-газофракционирующей установке во избежание повышения давления на установке каталитического крекинга. С увеличением конца кипения нестабильного бензина приходится изменять режим бутановой колонны, чтобы не снизить глубину отбора бутановой. фракции. [c.172]

    Высокотемпературная сероводородная коррозия в нефтяной промышленности представляет особую опасность для углеродистых сталей в связи с тем, что оборудование каталитического и термического крекинга подвергается воздействию также и водорода в условиях повышенных давлений. В этих условиях является весьма эффективным применение высокохромистых или хромоникелевых сталей. [c.156]

    При работе технологических установок весьма важен не только контроль отдельных параметров процесса. Поэтому на установках каталитического крекинга, кроме показывающих и регистрирующих прибо[ ов, применяются и приобретают все большее значение автоматические регулирующие приборы. Па установках каталитического крекинга в наиболее ответственных местах применяются автоматические регуляторы давления, например, их устанавливают на линиях, по которым подается топливо в форсунки печей. Повышение давления в системе, как это указывалось выше, может привести к-осложнениям и авариям, например, при повышении давления в реакторе может прекратиться движение катализатора и вследствие этого создаться аварийное положение. Для предупреждения чрезмерного повышения давления на линиях устанавливают клапаны, отрегулированные на определенное давление. Такой клапан установлен на линии сброса газа на факел. [c.118]

    При повышении парциального давления водорода [162, 174] относительная скорость гидрогенолиза метилциклопентана по связи а также увеличивалась. Предлагаемая выше трактовка роли повышенной концентрации водорода на поверхности катализатора хорошо согласуется с этими результатами. С тех же позиций вытеснения углеводорода (всей молекулы или ее части) с поверхности катализатора адсорбированным водородом следует, по-видимому, оценивать и результаты работы [144], в которой исследовалось каталитическое гидрирование циклопентана при повышенном давлении водорода. [c.151]


    Промышленный каталитический крекинг протекает при давлениях несколько выше атмосферного. Как правило, процесс проводится в присутствии пара таким образом, что парциальное давление нефтяного сырья несколько меньше, чем общее давление. Необходимость проведения реакции при низком давлении объясняется данными, приведенными в табл. 6 и 7. Повышение давления приводит к увеличению отложения кокса и к снижению октанового числа бензина (рис. 2). При низких давлениях образуется большое количество газа, являющегося в значи-> тельной степени ненасыщенным. Содержание олефинов в бензине также высоко. С увеличением давления бромное число бензина постепенно снижается, что указывает на уменьшение содержания олефиновых углеводородов. Однако уменьшение количества олефинов не связано с наблюдаемым [c.147]

    В ближайшие годы наиболее распространенной должна стать каталитическая конверсия метана с паром в трубчатых печах (первая ступень) и каталитическая конверсия остаточного метана с воздухом при повышенном давлении. [c.34]

    Схема двухступенчатой совмещенной каталитической конверсии метана и окиси углерода при повышенном давлении  [c.36]

    Кинетика каталитического крекинга рассматривается в работе Уилера [130]. Повышение давления увеличивает выход кокса и степень насыщенности бензина это сопровождается понижением его октанового числа. [c.343]

    Для превращения высших фенолов в низшие были применены также термический крекинг как при атмосферном так и при повышенном давлении и каталитический крекинг в присутствии алюмосиликатных катализаторов [c.196]

    Требования к каталитическим процессам в значительной степени определяются составом и характеристиками углеводородного сырья (его плотностью, содержанием в нем светлых нефтепродуктов, серы, азота, тяжелых металлов), а также активностью и селективностью используемых катализаторов. Режимы современных установок каталитического крекинга отличаются высокими температурами процесса и скоростями подачи сырья, повышенными давлениями в реакторном блоке. [c.4]

    Мы провели несколько экспериментов (табл. 2) в совершенно одинаковых условиях, которые позволили сделать уже отмеченный в литературе вывод, что в качестве катализаторов реакции между этиленом и серной кислотой целесообразно применять серебро, железо, ванадий и медь, а в промышленных масштабах — только железо и медь. Оба металла по каталитическому действию значительно уступают серебру, но экономически они намного выгоднее. Однако использование их не может решить проблемы, следовательно,, нужно стремиться к отысканию новых возможностей. Одной из них является повышение давления. [c.22]

    Обратимое отравление каталитическими ядами, которые могут быть, однако, удалены с катализатора или в ходе основного процесса (например, повышением давления водорода, увеличением концентрации нафтенов), или при окислительной регенерации. [c.349]

    Каталитические реакции разделяются на два основных класса гомогенные и гетерогенные. Гетерогенным катализатором является химическое соединение, нерастворимое в реакционной среде. Катализатор может быть индивидуальным, смешанным с другими катализаторами или нанесенным на инертный носитель. Распространенные гетерогенные катализаторы — металлы и их оксиды. Преимущества гетерогенных катализаторов заключаются в их низкой стоимости, простоте регенерации и пригодности к использованию в реакторах как периодического, так и проточного типа. К недостаткам этих катализаторов относятся обычно невысокая специфичность действия и во многих случаях большие затраты энергии на обогрев реакторов и создание повышенного давления. [c.35]

    Каталитическое окисление, как правило, осуществляют при абсолютных давлениях 1,2—1,5 атм. Повышение давления благоприятно и с кинетической, и с термодинамической точек зрения. Однако технические и экономические трудности строительства установок повышенного давления и управления ими столь велики, что до настоящего времени построена лишь одна крупная установка такого типа [1]. Несколько небольших каталитических установок для получения газообразного ЗОз, используемого для сульфирования и в других целях, работало при давлениях 4—5 атм и выше. [c.240]

    Присутствие полициклических ароматических углеводородов в сырье, направляемом на каталитический крекинг, нежелательно, так как крекинг их протекает с трудом. Они образуют непропорционально большое количество кокса и почти не увеличивают выхода наиболее ценных компонентов. При гидрогенизационной очистке, особенно при повышенном давлении, полициклические ароматические углеводороды превращаются в моноциклические ароматические углеводороды и цикланы. Моноциклические ароматические углеводороды образуются с большей скоростью, чем цикланы. Поэтому вначале концентрация моноциклических углеводородов возрастает до равновесной. Затем равновесие нарушается и содержание моноциклических ароматических углеводородов снижается со скоростью, соответствующей скорости их насыщения водородом [289].  [c.193]


    По мере уменьшения объемной скорости подачи сырья выход гексанов снижается намного медленнее, чем выход гептанов. Следовательно, реакционная способность гексанов В условиях каталитического риформинга значительно меньше реакционной способности гептанов. Повышение давления от 1 до 3 МПа при 475 °С приводит [c.142]

    Для каталитической конверсии метана применяют никелевый катализатор на носителе — оксиде алюминия. В присутствии никелевого катализатора равновесие быстро достигается уже при 800°С. Несмотря на то что содержание СН в равновесном газе повышается с увеличением давления, конверсию метана выгодно проводить при повышенном давлении для увеличения скорости реакции. При этом используется естественное давление природного газа, при котором он подается на завод,— 1—4 МПа. При повышении давления уменьшаются объем аппаратуры и трубопроводов. [c.74]

    На термической ступени установки Клауса чем ниже давление, тем выше степень конверсии сероводорода в серу, хотя в области низких давлений эта зависимость невелика. На каталитической ступени наоборот повышение давления благоприятно влияет на выход серы. На практике в каталитических конверторах обычно поддерживается давление на уровне 0,012- [c.97]

    Углеводороды Сд и выше в основном растворяются в жидком катализате. Количество же растворенного этана, а тем более метана, зависит от давления в сепараторе, близкого к давлению в реакторе. Таким образом, концентрация На в водородсодержащем газе зависит как от выхода метана и этана в процессе риформинга, так и от давления процесса. Если каталитический риформинг идет с небольшим газообразованием, т. е. с увеличенным выходом бензина, то нри повышении давления концентрация На в водородсодержащем газе риформинга увеличивается, что видно из рис. 6 [20]. [c.26]

    В зависимости от того, в какой среде определяется температура самовоспламенения (кислород, воздух), будут получаться разные ее значения. Может оказывать влияние также метод определения, форма и материал прибора (каталитическое действие). С повышением давления воздуха температура самовоспламенения топлив снижается. [c.110]

    Этот эффект связан с высокой плотностью катализатора 15-4 и 15-5, поскольку эффективная глубина проникновения на внешней поверхности катализатора уменьшается, если плотность таблетки увеличивается. При тех плотностях, которыми обладают эти катализаторы, диффузия продолжает лимитировать реакцию даже на таблетках с высотой 3,6 мм. С точки зрения каталитической активности, существуют очевидные преимущества, которые можно получить, используя таблетки 5,4 х3,6 мм. В гл. 2 и 3 (рис. 3) было показано, что эффекты, обусловленные диффузией, становятся более ощутимыми с увеличением давления. Следовательно, при повышенных давлениях появляются сильные доводы в пользу уменьшения размера таблеток. Оптимальный размер таблетки должен зависеть также от перепада давления в конверторе, что обсуждается в следующем разделе. [c.129]

    Высокие температуры промышленного процесса каталитического риформинга (480—540° С) вызывают неизбежные в этих условиях реакции крекинга. Образующиеся осколки молекул могут насыщаться водородом, выделяющимся в результате основных реакций дегидрирования, или вступать в реакции уплотнения. Относительная роль этих реакций определяется режимом процесса и, в первую очередь,— парциальным давлением водорода, находящегося в системе. Так, на одной промышленной установке регенерацию катализатора, вызванную дезактивацией его побочными продуктами уплотнения, проводили через каждые семь суток. При повышении давления в реакторе с 14 до 24—25 ат пробег установки увеличился до трех месяцев. Под высоким давлением водорода протекают реакции гидрокрекинга, т. е. крекинга с насыщением образующихся продуктов водородом. Эту реакцию можно выразить уравнением  [c.216]

    Подавление реакций уплотнения, быстро дезактивирующих катализатор, возможно при условии высокого парциального давления водорода (образующегося- при основных реакциях). Применение циркуляции водорода под давлением на промышленных установках каталитического риформинга позволило значительно увеличить длительность непрерывной работы катализатора, а также повысить пропускную способность установок. Однако на основные реакции дегидрирования повышенное давление влияет тормозящим образом, так как сдвигает равновесие — нафтеновый (или парафиновый) углеводород ароматический углеводород — в сторону увеличе- [c.216]

    Конверсия углеводородных газов газообразными окислителями может проводиться в присутствии катализаторов или без них (высокотемпературная конверсия), при атмосферном или повышенном давлении. Наиболее распространены процессы каталитической конверсии в присутствии гетерогенных катализаторов. [c.216]

    В высокотемпературной зоне с повышением давления степень пре — вр.ащения в серу снижается. В каталитической зоне повышение давления, наоборот, ведет к увеличению степени конверсии, так как давление сносе бствует конденсации элементной серы и более полному выводу и зоны реакции. На практике увеличение степени конверсии Н З дс стигается применением двух или более реакторов — конверте— рев с удалением серы конденсацией и последующим подогревом газа между ступенями. При переходе от одного реактора к другому по потоку газа температуру процесса снижают. [c.166]

    Гидрирование окиси углерода с образованием спиртов и углеводородов выше Gj представляет собой относительно медленную каталитическую реакцию. Андерсон [27с] рассчитал, что молекула окиси углерода живет на поверхности кобальтового катализатора около 5 мин., прежде чем она прореагирует. Все активные катализаторы синтеза содерн ат железо, иикель, кобальт или рутений в качестве основного гидрирующего компонента. Эти четыре металла в условиях синтеза медленно, но с измеримой скоростью образуют карбонилы металлов, что, по-видимому, имеет определенное значение. Оптимальная температура синтеза для никеля и кобальта находится в пределах 170—205°, для железа 200—325° и для рутения 160—225°. Допустимое максимальное давление для синтеза на никелевых катализаторах составляет примерно 1 ат, на кобальтовых — около 20 ат. При более высоком давлении активность этих катализаторов резко падает (по мере повышения давления). Железные катализаторы, приготовляемые плавлением магнетита, проявляют активность под давлением 20—100 ат i, в то время как осажденные железные катализаторы выше 20 ат ослабевают I27d]. Рутениевые катализаторы относительно неактивны при давлении ниже 100 ат, но их активность быстро растет по мере его повышения до 300 ат [27е]. При оптимальных давлениях (О—1 ат для Ni 1—20 ат для Go, 1—20 ат для осажденных Fe-катализаторов, 20—100 ат для плавленых Fe-катализаторов и 100—300 ат для Ьи) коэффициент давления (показатель п в уравнении скорость = коистат та х давление") составляет около 0—0,5 для Ni и Go и близок к единице для Fe и Ru. [c.521]

    Прп повышенных давлениях возможно ирпменение более слабой (75%-но11) кислоты. Прп гидролизе алкилсульфата некоторое количество изопропилового эфира образуется в качестве побочного продукта. Из изопропилового спирта легко получается ацетон либо путем каталитического окисления, либо путем дегидрирования над металлическим (обычно медным) катализатором. [c.578]

    Из табл. 30 г.идно, что даже незначительное повышение давления (до 0,5 МПа) в процессе алюмосиликатной очистки ведет к резкому улучшению эффекта очистки и отношении снижения высокого выхода целевой фракции (95 % на сырую фракцию), т. е. в еще большей мере ускоряет реакции, катализируемые алюмосиликатами в условиях каталитической очистки. [c.119]

    Исследованы каталитические свойства трех карбонилов железа Ре(СО)б, Ре2(СО)9 и Рез(СО)12 [42]. Додекакарбонил желёйа переводил гексен-1 при 60 °С в смесь изомеров, близкую по составу к термодинамически равновесной, а нона- и пентакарбонил про-. являли аналогичную активность лишь при более высоких температурах. Как и в более ранних работах, увеличение давления СО уменьшало или даже полностью подавляло изомеризацию. Ее скорость снижалась и при повышении давления водорода, а в атмосфере аргона подавлялись лишь побочные реакции. [c.107]

    В таких процессах как каталитический риформинг отсутствие водорода в реакционной зоне привело бы к сильному коксооб-разованию и быстрому отравлению катализатора. Водород под повышенным давлением гидрирует ненасыщенные углеводороды, адсорбированные на катализаторе, и препятствует пх уплотнению и превращению в кокс . Водород таклсе препятствует реакции кои-денсации ароматических углеводородов, ириводящс к коксообра-зованию. [c.144]

    Повыщение давления в реакторе свыше установленного по технологической карте может привести к прекращению (срыву) циркуляции катализатора, что в свою очередь приведет к длительному разлаживанию режима работы устанйвки. Кроме того, при прекращении циркуляции катализатора вследствие повышения давления в реакторе часть паров сырья из захватного сооружения попадает в регенератор, что приводит к интенсивному горению н подъему температуры в регенераторе, уносу катализатора и длительному разлаживанию режима работы установки. Кроме того, высокая температура приводит к снижению каталитической активности катализатора. [c.154]

    Для двухфазных газо-жидкостных и жидкость-жидкостных систем величина для дисперсной фазы определяется не объемной скоростью потока, а зависит от гидродинамических режимов потоков. Области существования последних определяются отношением объемных скоростей дисперсной и сплошной фаз. Для реакций под повышенным давлением, которое обычно применяется в случаях газо-жидкостных каталитических реакций, наиболее часто встречается режим пузырькового течения. В этом случае скорость всплывания пузырей определяется разностью плотностей сплошцой и дисперсной фаз, диаметром пузыря, зависящим от типа и размера распределительного устройства и от величины поверхностного натяжения на границе раздела фаз. В качестве примера формулы, видимо, приемлемой для расчета колонных аппаратов с суспендированным катализатором, можно привести приближенную формулу для скорости всплывания пузырьков в объеме жидкости при ламинарном движении [26] [c.303]

    Влияние условий процесса в основном хорошо согласуется с поженными выше его химическими особенностямя. Повышение давления водорода, облегчая стабилизацию радикалов (реакция Щ должно тормозить реакции конденсации типа J0, 11. Поэтому ц Ги-меняются повышенные давления, но так, чтобы пе уменьшить селективность Повышение температуры увеличивает выход продуктов деметилирования как в каталитических, так и в термических процессах. Однако одновременно растет выход продуктов конденсации и усиливаются отложения кокса на катализаторе. Поэтому для каждого катализатора подбирается оптимальная температура, составляющая для хромового и молибденового катализаторов на активированном угле 535—550 °С, для окисного алюмокоТбальтмояиб-денового катализатора — 580—600 °С, для хромового катализатора без носителя — 600—650 °С. Во многих процессах в сырье вводят водяной пар, что уменьшает образование продуктов конденсации и кокса. Такое действие пара объясняют ассоциацией молекул воды с радикалами, что снижает реакционную способность радикалов, но не в такой мере, чтобы препятствовать реакции 2. [c.333]

    В производствах синтетического аммиака используются различные способы получения азотоводородной смеси 1) двухступенчатая каталитическая конверсия метана водяным паром [(2—3)-10 Па] 2) высокотемпературная конверсия природного газа (без катализатора при температуре 1400—1450°С и давлении 3-10 Па) 3) кислородная конверсия газа либо под атмосферным давлением, либо под повышенным давлением 4) разделение коксового газа. [c.201]

    В основе представлений о механизме изомеризации ароматических углеводородов лежат некоторые наблюдения. Так, установлено, что изменение условий каталитического риформинга в направлении, благоприятствующем гидрированию ароматических углеводородов (повышение давления, понижение температуры) способствует увеличению скорости их изомеризации [20, 86]. Другой фактор — значительное ускорение реакции изомеризации этилбензола при предварительном его гидрировании в этилциклогексан [86]. На этом основании полагают, что изомеризация ароматических углеводородов на бифункциональных платиновых катализаторах проходит при участии циклоиарафинов в качестве промежуточных продуктов. реакции. [c.47]

    Технология процесса включает ряд стадий, которые вытекают из специфических свойств платиновых катализаторов риформинга и делают возможной их успешную эксплуатацию в промышленных условиях. Вместе с тем каталитический риформинг по своей технологии и аппаратурному оформлению обнаруживает значительное сходство с гидрогенйзационными процессами, осуществляемыми под повышенным давлением. [c.122]

    В промышленности реализуют коиверсию метана при атмосферном или повышенном давлении с применением катализаторов (каталитическая конверсия метана) или без катализаторов (высокотемпературная конверсия метана). Применение катализаторов уйеличивает скорость процесса и позволяет снизить температуру, поэтому преобладает каталитическая конверсия метана. [c.74]

    Большое значение для экономичности процесса гидрогеиолиза углеводов имеет повторное использование катализатора. Возможность его повторного использования определяется главным образом изменением его каталитических и механических свойств в ходе реакции. Контроль за процессом по потенциалу катализатора, проведение реакции при оптимальном смещении потенциала (для никеля на кизельгуре 200 мВ [33]) во многом способствует его стабильной работе. Если смещение потенциала превышает оптимальную величину, нарушается селективность процесса (образуются кислые продукты, отравляющие катализатор). Чем больше смещение потенциала в анодную сторону, тем сильнее обезводо-роживается катализатор и интенсивнее идет процесс окисления поверхности никеля с образованием его гидроокиси [45]. Как указывает Л. X. Фрейдлин [45], все факторы, благоприятствующие созданию Б сфере реакции избытка активного водорода над его расходом, должны способствовать устойчивости катализатора сюда относятся повышение давления водорода, снижение температуры реакции и концентрации гидрируемого соединения в системе, подбор растворителя и промотирование, способствующее ускорению активирования водорода, а также факторы, уменьшающие адсорбцию компонентов реакции. [c.120]

    Процессы глубокого гидрирования осуществляют обычно под давлением до 200—300 аг в результате из вакуумных дистиллятов, газойлей каталитического крекинга и деасфальтизатов получают моторные [77], турбинные [78], компрессорные [79], авиационные [80] и специальные масла [79]. Глубокое гидрирование проводят обычно в присутствии алюмокобальтмолибденового катализатора. Применяют и другие каТаЛйзаторы с более выраженными гидрирующими функциями, например алюмокобальтвольфрамовые. Более активные катализаторы и повышенные давления водорода способствуют значительному возрастанию индекса вязкости масел. Однако при ужесточении режима гидрирования одновременно с увеличением индекса вязкости снижается выход масла.  [c.281]

    Процесс газификации - не каталитический пламенный, протекает Б пустотелом реакторе цилиндрической формы при 1550-1750 К под давлением от 0,2 до 10 1Ша и выше. Получаемый в реакторе газ содержит 45- 7% СО и 45-47 8 Н2, остальное-С021 азот и метан. Удельный расход сырья составляет 4,6-4,8 т на 1 т 100%-ного водорода расход кислорода-0,75-0,8 нм на I кг сырья пара-0,4-0,6 кг/кг выход газа-около 3 нм /кг. В качестве сырья в процессе могут использоваться углеводороды от газообразных до тяжелых нефтяных остатков. Схема процесса позволяет получить синтез-газ с различным отношением Н2 С0, водород или одновременно синтез-газ и водород. Применительно к установке мощностью 20 тыс.т водорода в год стоимость водорода газификации по сравнению с паровой каталнтической конверсией на 15-20% выше в первую очередь за счет производства технического кислорода. Однако применение установок газификации под повышенным давлением позволяет снизить расход энергии на сжатие получаемого водорода в первую очередь для процесса гидрокрекинга. [c.7]

    Наиболее ранняя модификация промышленного процесса изомеризации была предназначена для увеличения ресурсов изобутана — сырья для производства алкилата, являющегося высокооктановым компонентом авиабензинов. Первые промышленные установки такого типа начали строить г. годы второй мировой войны. Сырьем для процесса служил нормальный бутан, выделяемый из газов нефтеперерабатывающего завода. Процесс изомеризации нормального бутана представлял особый интерес для тех заводов, иа которых отсутствовали установки каталитического крекинга (известно, что газ каталитического крекинга достаточно богат изо-бутаном). Катализатором для процесса изомеризации служил хлористый алюминий, активированный H I и используемый при мягком температурном режиме (90—120° С) и при повышенном давлении в реакционной зсне. [c.254]

    Изомеризация парафинов в присутствии наиболее распространенных бифункциональных катализаторов протекает, очевидно, подобно каталитическому крекингу, через промежуточное образование олефи1Юв. Увеличеиию степени изомеризации способствует повышение мольного отношения водорода к углеводородному сырью и повышение давления (примерио до 50 ат). Реакция изомеризации ускоряется повышением температуры до некоторого предела, иосле чего глубина изомеризации начинает снижаться .  [c.266]


Смотреть страницы где упоминается термин Каталитические повышенном давлении: [c.13]    [c.244]    [c.413]    [c.142]    [c.83]    [c.48]    [c.238]    [c.253]   
Каталитические, фотохимические и электролитические реакции (1960) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Давление повышенное

Каталитическая конверсия углеводородов при повышенном давлени

Каталитические реакции при повышенном давлении

Каталитическое гидрирование циклопентана под повышенным давлением водорода (совместно с Е. М. Терентьевой)

Одноступенчатая каталитическая конверсия метана под повышенным давлением



© 2025 chem21.info Реклама на сайте