Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Золото неорганические соединения

    По мере более глубокого познания природы и развития химических знании накапливался все больший запас экспериментальных данных о различных веществах, их видах и свойствах. Если в древнем мире основные сведения о веществах ограничивались знанием всего лишь нескольких металлов, встречавшихся в самородном состоянии или сравнительно легко выплавлявшихся (золото, серебро, ртуть, медь, олово, свинец), нескольких неметаллов (углерод в виде угля и алмаза, сера, в дальнейшем мышьяк, сурьма, фосфор), некоторых кислот (соляная, серная, азотная, уксусная), то к концу XIX— началу XX в. полученных и описанных в литературе неорганических соединений насчитывалось уже многие десятки тысяч, а органических в настоящее время несколько миллионов. Естественно, что издавна возникала необходимость классификации соединений, создания для них рациональной химической номенклатуры. [c.119]


    Эндотермичными среди неорганических соединений являются гидриды неметаллов (силаны, бораны и др.), оксиды азота и хлора, нитриды, карбиды, цианиды, соединения золота и некоторые другие вещества среди органических соединений — это многие углеводороды. [c.17]

    НЕОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ ЗОЛОТА Фториды золота [c.13]

    Основное направление научных исследований — прецизионный химический анализ неорганических соединений. Выделил (1802) глюкозу из виноградного сока. Впервые ввел представление о гидратах окисей металлов и предложил термин гидрат . Установил (1798) существование закиси меди. Позднее получил закись кобальта и определил состав окиси золота. Открыл аминокислоту лейцин. Занимался исследованиями камфары, крахмала, сахара. Исследовал (1797—1809) состав различных окислов металлов, хлоридов и [c.411]

    Элементарная сера химически активна и взаимодействует при нагревании со многими металлами и неметаллами (за исключением золота, платины, азота, иода и инертных газов), с органическими и неорганическими соединениями. При комнатной температуре во влажном воздухе сера слабо окисляется, при 280 °С она горит в кислороде, а при 360 °С — на воздухе. Смесь паров серы и кислорода взрывается. Электрохимический эквивалент серы  [c.345]

    Иногда неорганическое соединение можно извлечь как таковое (например, хлорид железа, хлорид золота и хлориды некоторых других металлов—эфиром), но обычно для открытия или определения иона добавляют органический реактив, образующий внутрикомплексную соль (стр. 161), извлекаемую различными органическими растворителями. Органические реактивы ценны для методов извлечения не только потому, что они могут быть селективными, но также и потому, что образующийся металлический комплекс часто окрашен. Таким образом, ион 1 ожно отделить и определить с помощью только одной операции. [c.102]

    Г. А. Бергман — термодинамические функции веществ в конденсированном состоянии, температуры и изменения энтальпии при фазовых переходах неорганических соединений цинка, кадмия, ртути, меди, серебра, золота, платиновых металлов и части соединений железа, кобальта и никеля, энтальпии сублимации элементов  [c.8]

    Развитие химии координационных соединений золота, особенно интенсивное за последние двадцать лет, характеризовалось накоплением большого экспериментального материала по количественным термодинамическим данным о комплексообразовании золота с неорганическими и органическими лигандами. Эти данные позволили обосновать многие существующие методы определения золота. Большой вклад в развитие аналитической химии золота внесли советские химики. [c.5]


    В аналитической химии золота из неорганических соединений наиболее часто используют простые и комплексные хлориды Au(I, III), особенно ионы Au lJ. [c.13]

    В работе [1049] изучены условия, при которых возможно быстрое спектрофотометрическое определение ртути в неорганических соединениях. Показано, что закон Вера выполняется для концентраций (0,5—4)-10 М Hg(II). Относительное стандартное отклонение составляет 1,8%. Изучено влияние концентрации иодида калия на определение ртути и найдено, что для 2,2-10 М Hg(II) поглощение остается неизменным, если концентрация иодида калия изменяется от 1,2 до 0,8 М. Установлено, что при pH 4 окисление Т до Тз становится заметным, однако ошибка не превышает 1%. Измерение поглощения ртутного комплекса при pH 10 дает ошибку 1%. Низкие величины оптической плотности могут быть получены при высоких pH из-за образования частиц Hg(OH) . На определение ртути данным методом оказывают влияние анионы СгО , СгзО , поглощающие в области 323 млг. Влияние СН связано с образованием частиц типа Hg( N) J4 . Ионы Ag , Сг + не влияют, если их концентрация равна 2-10 М. Но медь, платина, золото окисляют Т до и поэтому должны быть восстановлены кислым раствором НааЗгОз до анализа. Влияют на определение ртути ионы Ре(П), РЬ(П), В1(1П), Т1(1), которые дают видимые осадки в 1 М КТ при концентрации их. <1.10 М. Этот метод может быть применен в присутствии галогенидов и псевдогалогенидов. [c.105]

    Многие микроорганизмы, обитающие в водной среде, способны превращать неорганические соединения ртути, олова, свинца, золота и других металлов в их метильные производные, например, в диметилтруть. Эти дериваты металлов летучи и испаряются из водоемов в атмосферу. Поэтому для микробов это процесс детоксикации, очистка среды обитания от загрязнения ионами тяжелых металлов. С точки зрения человека ситуация здесь обратная метилированные металлы более токсичны, чем их ионные формы. Это особенно наглядно проявилось в случае массового отравления людей на берегах залива Миямата в Японии. Расположенный на побережье химический завод сбрасывал в море отходы, содержащие неорганическую ртуть в безопасной концентрации. Однако обитающие в донном иле микроорганизмы вырабатывали из этого субстрата диметилртуть, которая накапливалась в организмах рыб. У людей, питавшихся выловленной в заливе рыбой, развились симптомы тяжелого поражения нервной системы. [c.624]

    Вторая группа катализаторов — металлы, такие, как медь [58, 59], иридий [60] и ванадий [60] (к их числу не относятся серебро, железо, цинк и никель). Кроме того, эта группа включает соли металлов сульфат [59] и стеарат [53, 54] меди (II), цианид меди (I) [59], смесь иодида меди (I) с аминами [60], хлорид и бромид меди (I) [61, 62], хлорид золота (III) [63], трихло-рид иридия и ванадия, тетрахлорид платины [60], иодид [64] и хлорид [65] цинка. В результате взаимодействия диазометана с этими неорганическими соединениями образуются либо полиметилен, либо этилен, либо металлоорганические соединения типа М(СН ,Х) . Образование этих соединений Виттиг и Шварценбах [66] связывают с отличиями в восстановительных потенциалах соответствующих металл-катионов, которые введены в реакцию  [c.22]

    Очень большое значение имеет, конечно, не только цвет, но и качество покрытия. Обычно при золочении стараются получить красивую блестящую пленку. Но что такое блеск Оказывается, у этого понятия нет строгого научного определения. Ощущение блеска субъективно, оно возникает, когда поверхность обладает двумя противоречивыми свойствами-зеркальным и рассеянным отражением света. Качество позолоты зависит от условий электролиза, от состава электролита и состояния поверхности, на которую оседает металл. Осадок может быть плотным или рыхлым, блестящим или матовьш . Чтобы он получился блестящим, в состав электролита вводят блескообразователи-специальные органические или неорганические соединения. Например, блеск покрытия улучшается при использовании соединений никеля, кобальта, титана, особенно если ввести в электролит органические комплексообразователи типа многоатомных спиртов, алифатических аминов. Из органических добавок часто используют соединения, содержащие серу, например, тиомочевину. Качество позолоты, прежде всего, зависит от подготовки поверхности, на которую ее наносят. Особенно это важно для очень тонких покрытий, когда золотая пленка в точности повторяет рельеф поверхности если поверхность [c.16]

    Основными реформаторами алхимии выступили Парацельс (1493—1541) и Агрикола (1494—1555). Цель химии состоит не в изготовлении золота и серебра, а в изготовлении лекарств , — писал Парацельс. Он считал, что все живое состоит из трех начал, находяшихся в разных соотношениях соли (тела), ртути (души) и серы (духа). Болезни проистекают от недостатка в организме одного из этих элементов . Следовательно, лечить болезни нужно, вводя 3 организм недостающий элемент. Успешность ряда предложенных Парацельсом новых методов лечения на основе использования простых неорганических соединений (вместо применявшихся ранее органических экстрактов) побудила многих врачей примкнуть к его школе и заинтересоваться химией. Последняя получила мощный толчок к дальнейшему развитию, так как нашла широкое практическое применение. [c.9]


    Работы в Московском институте стали и сплавов на кафед- ре физико-химических исследований процессов производства чистых металлов и полупроводников (А. Н. Крестовников), а ранее в Институте цветных металлов и золота им. М. И. Калинина относятся к свойствам цветных и редких металлов и полупроводниковых материалов, а также к теории глубокой очистки веществ (В. Н. Вигдорович и В. М. Глазов — ныне в Московском институте электронной техники). К этому направлению примыкают работы по изучению свойств неорганических соединений и характеристик металлургических процессов (В. П. Елютин, Ю. А. Павлов, В. П. Поляков, [c.13]

    Иногда неорганическое соединение можно извлечь как таковое (хлориды железа, золота и других металлов — эфиром, стр. 233, четырехокись осмия — четыреххлористым углеродом и т. п.), но обычно в случае металлов добавляют органический реактив, образующий внутрикомплексную соль , извлекаемую различными органическими растворителями, часто с очень благоприятным коэфициентом распределения. Органические реактивы ценны для методов извлечения не только потому, что они могут быть высоко селективны, но также и потому, что образующийся металлический комплекс может быть окрашен таким образом, металл иногда можно отделить и определить одной операцией, как это видно на примере о дифенилтиокарба-зоном. [c.42]

    Неорганические соединения, предложенные в качестве пигментов, но еще не нашедшие применения желтый Сидерина (основной хромат железа), желтый Стейнбала (двойной хромат калия и кальция), сусальное золото (сульфид олова 5п5), ореолин (кобальтинитрит калия). [c.315]

    Наряду с реакциями нейтрализации и замещения наиболее широко при титровании органических и неорганических соединений применяются реакции окисления. Окислители, используемые при титровании неорганических соединений, также широко используются при титровании органических соединений. Например, неорганические агенты ионы церия (IV) и меди (И), бихромат, феррицианид, перманганат, галогены, бромат, иодат, гипогалогениты, а также органические реагенты хлорамин В и Т и реагент Тильмана используются более чем в 10 случаях каждый (иногда их применение ограничивается определением индивидуальных соединений). К числу окислителей, используемых не так часто (от 3 до 10 случаев, как указано в таблицах в Части 2), относятся ионы золота (П1), железа (П1), марганца (П1), ртути (И), а также соединения свинца (IV), перкупрат, перйодат и ванадат. Известны лишь один или два примера использования соединений серебра (II), персульфата, этоксирезазурина и этоксирезаруфина, нафтахинон-4-сульфонат натрия, нитропруссида, надбензойной и пикриновой кислот. [c.62]

    Когда число электронов во внешней незаполненной оболочке атомов -переходных металлов становится больше шести, их полное отделение оказывается энергетически невыгодным, и поэтому высшие валентности металлов VII, VIII групп в неорганических соединениях, равные соответственно семи и восьми, обычно не реализуются. Характерные валентности этих металлов в наиболее прочных неорганических соединениях указаны в табл. 37. В соответствии с этим, а также судя по уменьшению термодинамической прочности кристаллической решетки при переходе от металлов VI группы к металлам VII, VIII и 1Ъ, 116 побочных групп (на что указывает уменьшение температур плавления, кипения и других свойств), можно предположить, что заряд ионов в металлических решетках понижается от шести в VI группе до одного у меди, серебра и золота. Экспериментально найдено, что число свободных электронов в кристаллических структурах и расплавах меди, серебра и золота близко к 1 эл1атом. [c.225]

    Президентом ассоциации сЭкоаналитика , объединяющей ведущие аналитические лаборатории, а также специалистов Академии наук, вузов и различных ведомств России, специализирующихся в области аналитической химии, является лауреат Государственной премии СССР, академик РАН Золотов Ю. А. (р. 1932 г.). Он же — президент Российского химического общества им. Д. И. Менделеева, директор Института общей и неорганической химии им. Н. С. Курнакова. Основные исследования ученого связаны с изучением экстракции неорганических соединений и концентрированием микроэлементов. Золотов Ю. А., будучи химиком-аналитиком, внес значительный вклад в развитие теории экстракции, предложил новые экстрагенты. В 1975 г. он ввел в аналитическую химию понятие о гибридных методах анализа (это способы анализа, в которых органически объединено разделение и определение, например газовая хроматография). С 1988 г. главный редактор Журнала аналитической химии . [c.32]

    Ртуть и ее многочисленные органические и неорганические соединения могут быть причиной профессиональных дерматитов и экзем при разработке ртутных руд и извлечений из них золота и серебра, при фильтрации и дистилляции ртутных сплавов, амальгировании фарфора, в стекольном производстве, при производстве и работе со ртутьсодержащими инсектицидами, в электротехнике, при производстве научного инструментария, у медицинских работников (пожалуй, несколько чаще, чем у работников других профессий) и т. д. [c.159]

    Ртутьорганические соединения требуют применения специальных способов минерализации и методов конечного определения, поскольку не только ртуть, но и почти все ее органические и неорганические соединения летучи. Первый способ был описан Боэтиусом [26], который применял метод сжигания, предложенный Преглем для определения углерода и водорода, п поглощал пары ртути золотой фольгой. Мицуи и др. [27 оппсали такой же метод, где пары ртути улавливали гранулированным серебром нри температуре 40—100°С, и ртуть определяли по привесу. [c.435]

    СТЕКЛО (обыкновенное, неорганическое, силикатное) — прозрачный аморфный сплав смеси различных силикатов или силикатов с диоксидом кремния. Сырье для производства стекла должно содержать основные стеклообразующие оксиды 510а, В Оз, Р2О5 и дополнительно оксиды щелочных, щелочноземельных и других металлов. Необходимые для производства С. материалы — кварцевый песок, борная кислота, известняк, мел, сода, сульфат натрия, поташ, магнезит, каолин, оксиды свинца, сульфат или карбонат бария, полевые шпаты, битое стекло, доменные шлаки и др. Кроме того, при варке стекла вводят окислители — натриевую селитру, хлорид аммония осветлители — для удаления газов — хлорид натрия, триоксид мышьяка обесцвечивающие вещества — селен, соединения кобальта и марганца, дополняющие цвет присутствующих оксидов до белого для получения малопрозрачного матового, молочного, опалового стекла или эмалей — криолит, фторид кальция, фосфаты, соединения олова красители — соединения хрома, кадмия, селена, никеля, кобальта, золота и др. Общий состав обыкновенного С. можно выразить условно формулой N3,0-СаО X X65102. Свойства С. зависят от химического состава, условий варки и дальнейшей обработки. [c.237]

    Грехэм [13] условно разделил химические вещества в зависимости от их способности проходить через мембраны на кристаллоиды, которые проходят через мембраны, и коллоиди, задерживаемые ими. В настоящее время известно, что существуют ряд веществ, для которых нельзя провести четкой границы между коллоидами и кристаллоидами. К типичным коллоидам относятся высокомолекулярные органические соединения (белки, нуклеиновые кислоты, полисахариды, полимеры, полученные методами полимеризации и поликонденсации), неорганические коллоиды (золото и т. д.) и мицеллярные ассоциаты низкомолекулярных веществ (мыла, красители и др.). Типичным случаем, в котором трудно провести резкую границу между коллоидами и кристаллоидами, являются продукты конденсации аминокислот. Сами аминокислоты и низкомолекулярные пептиды являются типичными кристаллоидами, пептиды со средним молекулярным весом занимают промежуточное положение, а белки совсем не проходят через мембрану. [c.194]

    Из неорганических реагентов применяют соединения ртути(1), Н2О2, соль Мора, Sn lj, которые восстанавливают золото (I, III) до элементного. Иногда для обнаружения золота получают перлы сплавлением образца с метафосфатом натрия. Используют реакции образования интенсивно окрашенных продуктов окисления реагентов [ферроцианид в присутствии нитробензола, Мп(П) в среде пирофосфата]. Многочисленны методы обнаружения ионов Au(III), основанные на окислении органических реагентов до интенсивно окрашенных продуктов. Эти реакции высокочувствительны, однако малоселективны, так как мешают все сильные окислители. Кроме того, очень часто мешают анионы, образующие с ионами Au(III) комплексные анионы и тем самым снижающие окислительно-восстановительный потенциал Au(IlI)/Au(I) или Au(III)/Au(0). [c.64]

    В качестве титрантов используют неорганические и органические соединения KJ, AsaOg, Na SjOg, гидрохинон, аскорбиновую кислоту, дитизон, соединения злементов в низшей степени окисления [Fe(II), Ti(III), Sn(II), u(I), Сг(П), Hg(I), Mn(II)]. Число применяемых титрантов заметно возросло в последние годы в связи с развитием амперометрическик методов определения золота. [c.118]


Библиография для Золото неорганические соединения: [c.69]    [c.227]    [c.340]    [c.71]    [c.328]    [c.371]   
Смотреть страницы где упоминается термин Золото неорганические соединения: [c.98]    [c.229]    [c.316]    [c.12]    [c.227]    [c.229]    [c.713]    [c.756]    [c.190]    [c.146]    [c.160]    [c.292]    [c.217]    [c.146]    [c.1060]   
Аналитическая химия золота (1973) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Золото соединения



© 2025 chem21.info Реклама на сайте