Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектроскопии потенциометрический

    Изучены гуминовые кислоты донных осадков Индийского океана методами рентгенографии, ИК-спектроскопии, потенциометрического титрования, электро- [c.306]

    С помощью атомно-абсорбционной спектрофотометрии, потенциометрического титрования, ИК-спектроскопии и спектров ПМР [c.342]

    Рассмотрим основные схемы анализа нефтяных сернистых соединений. В них приняты следующие сокращения ЛМ — ламповый метод ПМТ — потенциометрическое титрование ПВ — полярографическое восстановление ИТ — индикаторное титрование ПМ — пиролитический метод УФС — ультрафиолетовая спектроскопия AMT — амперометрическое титрование. [c.85]


    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Амперометрическое титрование Бумажная хроматография Высокочастотное титрование Ионообменная хроматофафия Кинетический метод Кондуктометрическое титрование Нефелометрический метод Полярографический метод Потенциометрическое титрование Пламенная эмиссионная спектроскопия Спектральный [c.319]

    Позже сочетанием методов потенциометрического титрования и инфракрасной спектроскопии было установлено, что катионит СБС-1 не является монофункциональным. Б нем помимо сульфогрупп содержатся карбоксильные группы [46]. [c.80]

    В последние годы для изучения химической кинетики стали широко применяться радиоспектроскопические методы и. в первую очередь, электронный парамагнитный резонанс (ЭПР) и ядерный магнитный резонанс (ЯМР). Усовершенствована аппаратура и получили дальнейшее развитие такие классические методы исследования, как инфракрасная ультрафиолетовая спектроскопия, спектрополяриметрия. Все шире во многих исследовательских лабораториях начинают использовать различные флуоресцентные и хемилюминесцентные методы анализа короткоживущих частиц, импульсный фотолиз, метод остановленной струи, радиотермолюминесценции и т. п. Важную информацию о механизме химических превращений можно получить при изучении воздействия на процесс света, квантовых генераторов и ультразвука. Много информации позволяет получить комбинированное применение потенциометрических и оптических методов. [c.3]


    Наиболее распространенным способом анализа концевых групп является неводное потенциометрическое титрование, в меньшей степени применяются ИК-, ЯМР- и масс-спектроскопия. Концевые группы можно также определить с помощью специфических реакций с радиоактивными реагентами, хромофорными веществами (красителями) или реагентами, содержащими такие элементы, которые отсутствуют в анализируемом полимере. [c.109]

    Базовая архитектура микро- и миникомпьютеров и больших систем с центральными процессорами была описана в гл. 4. Их использование в качестве средств ОД было рассмотрено на различных примерах, приведенных в предыдущих главах. Еще раз следует отметить, что специфические виды применения коМ пьютеров в ОД часто требуют средств определенного типа, а для решения ряда задач может потребоваться комбинация этих средств. Так, например, чтобы провести с минимальной задержкой обработку большого объема кристаллографических данных [7], необходим большой компьютер с центральным процессором или матричный процессор. В тех случаях, когда необходимо обработать большой объем данных, например при распознавании образов [8] или в спектроскопии сетки фотодиодов, мощность миникомпьютера или быстрого микропроцессора может оказаться вполне достаточной. Другие виды обработки данных могут быть идеально выполнены при помощи микропроцессора, в статье [11] приведен прекрасный пример применения микрокомпьютерной системы для обработки результатов, получаемых в процессе потенциометрического анализа десорбции. Примером комбинации средств ОД для решения аналитической задачи может служить описанное в статье [12] использование двух микропроцессоров (и периферийных устройств) и связанного с ними по телефонной сети центрального процессора для анализа и представления данных исследования рентгеновской эмиссии, индуцированной протонами. [c.373]

    Циклические температурные изменения и высокие температуры, возникающие в металлических частях конструкций теплиц во время жарких и солнечных дней, могут вести к ускоренной деструкции пленок. Легко заметить множественные повреждения пленки в тех местах, где она имеет контакт с металлическими структурными элементами, особенно если они не окрашены. Температура в точках контакта может достигать 70°С и более в зависимости от климатических условий. При этом диффузия ионов металла усиливает процесс деструкции. Частицы металла, особенно ионы, могут выступать в роли катализатора деструкции гидропероксидов, образовавшихся в результате окисления, что ведет к недопустимо высокой скорости деструкции. Механизм деструкции пленок из ПЭ, содержащих добавки с ионами металлов, изучался при температуре, стимулирующей компостирование. Концентрация гидропероксидов [РООН] в пленках анализировалась количественно с помощью йодометрического потенциометрического титрования, а результат сравнивался с данными Фурье-инфракрасной спектроскопии. Установлено, что концентрация [РООН] возрастает на ранней стадии деструкции, затем Идет более или менее ровное плато, и, наконец, она начинает снижаться. Подобный результат был получен и методом Фурье-инфракрасной спектроскопии. Также было обнаружено, что законы возрастания индекса карбонилов и концентрации [РООН] имеют более сложный характер, чем экспоненциальный рост, типичный для начальной стадии окисления [28]. [c.260]

    Для этих же целей были использованы методы ультрафиолетовой абсорбции [87], хроматографии [88], потенциометрический, колориметрический, атомноабсорбционной и УФ-спектроскопии, тонкослойной хроматографии и др. [89,90]. [c.14]

    Определяется методом фотометрии пламени [0-16], абсорбционной фотометрии с чувствительностью 0,008 мг/л и эмиссионной спектроскопии с чувствительностью 0,0002 мг/л [0-1]. Предложен потенциометрический метод с чувствительностью 0,001 мг/л [10]. Методом атомно-абсорбционной спектроскопии натрий определяется с чувствительностью 0,005 мг/л [0-24]. В США стандартным считается для определения натрия в питьевой воде и сточных водах метод фотометрии пламени с чувствительностью 0,1 мг/л [0-69]. Предложен автоматический потенциометрический метод с чувствительностью 0,1 мг/л [11]. , . [c.89]

    Примечание, м. И. ( 0,1°). т = 10 суток. Анализ жидкой фазы КЬ - гравиметрически в виде тетрафенилбората, СОз - потенциометрическим титрованием, - по разности (в некоторых пробах - методом пламенной эмиссионной спектроскопии). Анализ твердой фазы М. О. и рентгенографич. [c.119]

    Для изучения основности амидов применялись и другие экспериментальные методы, например потенциометрическое титрование [65, 164, 165], кинетический анализ кислотного гидролиза [100], замедление скорости кислотного катализа этерификации бензгидрола [280] и метод индикаторов Гаммета с использованием спектроскопии ЯМР [338] или Раман-спектро-скопии [80] для измерения концентраций. [c.234]

    Созданию современных представлений о строении диазосоединений способствовало широкое применение физико-химических методов исследования, в частности потенциометрического титрования, ультрафиолетовой и инфракрасной спектроскопии. [c.467]


    Для определения этих величин применяется большое число различных методов. Для исследования комплексонов наибольшее распространение получили электрометрические методы анализа (потенциометрический, полярографический, высокочастотного титрования, электропроводности), а также спектрофотометрия и инфракрасная спектроскопия. [c.38]

    Как и в случае краун-эфиров, образование криптатов может быть установлено с помощью ИК-, УФ-, ЯМР-спектроскопии, потенциометрическими и кондуктометрическими методами, экстракцией пикратов и т.д. Размеры полостей тицичных криптандов, представленных ранее на рис. 1.2, приведены в табл. 3.21. Исследования показали [9], что ионы щелочных и щелочноземельных металлов, Ag и Т1 ионные диаметры которых соответствуют размерам полости криптандов, включаются в нее, образуя комцлексы, В других работах описано образование комцлекса криптанда [2,2,2] с [c.161]

    Например, кристаллические сплы могут неблагоприятно влиять на рентгеноструктурные определения в твердом состоянии с другой стороны, в растворах такие основные методы, используемые для определения величины рКя, как УФ-спектроскопия, потенциометрическое титрование, а также ЯМР-спектроскопия, опернруют в разных областях концентрации. Существует также проблема возможных решающих различий основного и возбужденного состояний. По-виднмому, имеется общее согласие относительно главных таутомеров аденина (2 К == Н) и гуанина (12, 13) схема (1) , а также по поводу того основного принципа, что аминогруппы в пуринах существуют в ЫНг-форме, тиоксогруппы (за возможными небольшими исключениями) и оксогруппы — в С = 0 (амидной) форме, а имидазольный протон для большинства пуринов находится у N-9, хотя в самом пурине изучение дипольных моментов указывает на то, что более предпочтительно его расположение при N-7. По этим вопросам имеются обзоры [4, 7], а также раздел в книге по таутомерии гетероциклов [458, рр. 502 е seg.]. [c.593]

    Для количественного н качественного функционального анализа неуглеводородных соединений в остаточных нефтепродуктах [2.3-2.5] используется элементный анализ, потенциометрическое титрование, ИК-, УФ- н масс-спектроско-11ИЯ, люминесцентная спектроскопия. Параллельно желательно снимать для сравнения спектры эталонных индивидуальных соединений или нх смесей. Для качественного анализа можно пользоваться табличными данными по характеристическим полосам поглоидения [2.10, 2.11]. [c.37]

    Наиболее распространенным методом утилизации ОСМ (до 90% от их сбора) до сих пор остается сжигание — либо с целью простого уничтожения, либо (что осуществляется чаще) при использовании в качестве котельно-печного топлива или его компонента. Поэтому для характеристики антропогенного загрязнения атмосферы важен также анализ продуктов сгорания ОСМ. Рассмотренные выше исследования португальского института ШЕТ1 проводились в горизонтальной многосекционной печи с термической мощностью 240 кВт [170]. В табл. 2.12 и 2.19 представлены характеристики отработанных масел и условия их сжигания. Определение общего содержания металлов и их распределения как функции размера частиц возможно методом атомно-абсорбционной спектроскопии установка газоанализатора на линии выхлопа позволяет оценить содержание кислорода, оксида и диоксида углерода, оксидов азота и диоксида серы содержание хлора и брома определяется методом периодического поглощения их раствором кальцинированной соды с последующим потенциометрическим титрован ие.м. [c.100]

    Методы анализа - элементный анализ, потенциометрическая йодато-метрия, молекулярная масса методы сожжения, ИК-, УФ- спектроскопия масс-спектрометрия положительных и отрицательных ионов, позволяющие определить  [c.58]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    В данной работе целью йсследования является изучение распределения карбонилсодержащих соединений в тяжёлых нефтяных остатках и во фракциях, полученных при их адсорбционном разделении. Для исследования выбраны остатки, полученные при вакуумной разгонке товарной западно-сибирской нефти и нефтей Самотлорского месторождения, составлящих основу товарной неф- ри. Остатки характеризуются средним содержанием epi - 2,08, кислорода - 0,61j азота - 0,4 (% мае, ), Для анализа остатков на количественное содержание карбонильных груш использовался метод, основанный на реакции конденсации карбонильных соединений с 2,4-динитрофенилгидразином и У -спектроскопии образующихся продуктов. Метод позволяет определять два типа карбонилсодержащих соединений - кетоны с алкильными, нафтеновымиj, аро-матю1ескими заместителями и флуореноны. Для определения кислот, фенолов, сложных эфиров использовались потенциометрические методы. [c.115]

    Замещения гидроксилов на поверхности слоев другими анионами (фосфат-ион, фтор). Эта возможность подтверждена инфракрасной спектроскопией (А. Бусвелл и Б. Дуденбостел), изотопным обменом (Ч, Мак Аулиф и др.) и потенциометрическим титрованием (А. Вейс и др.). По стерическим соображениям особо благоприятны замещения на фтор (С. Дикман и Р. Брей). [c.65]

    Согласно сообщению [244] в растворах ИК-спектроскопией и потенциометрически был обнаружен димер [BeH2edta]2, в молекулах которого имелись как протонированные, так и депрото-нированные атомы азота. [c.133]

    Для МФДА методом потенциометрического титрования, ИК-и ПМР-спектроскопии было установлено цвиттер-ионное строение. Значение р/С, соответствующее отрыву протона от атома фосфора, составляет 6,19 (при 25°С и ц = 0,1) [148]. В кислой среде комплексон образует катионную форму НзЬ+. Из растворов были выделены кристаллы HaL-H I, имеющие температуру плавления 122 °С [148]. Данный продукт стабилен на воздухе, хорошо растворим в воде. Вместе с тем динатриевая соль метилфосфиндиуксусной кислоты неустойчива и на воздухе окисляется. [c.217]

    Кислотные, эфирные, карбонильные числа выше у асфальтенов битумов, полученных непрерывным окислением. Данные ИК-спектроскопии подтйерждают результаты потенциометрического определения функциональных групп (2).  [c.62]

    Методы различны по стоимости аппаратурного оформления. Наиболее дешевые — титриметрические, гравиметрические, потенциометрические методы. Аппаратура большей стоимости используется, например, в вольтампе-рометрии, спектрофотометрии, люминесценции, атомной абсорбции. Наиболее высока стоимость аппаратуры, используемой в нейтронно-активационном методе анализа, масс-спектрометрии, ЯМР- и ЭПР-спектроскопии (ядерно-магнитно-резонансная и электронно-парамагнитно-резо-нансная), в атомно-эмиссионной спектроскопии с индуктивно связанной плазмой. [c.37]

    По данным ИК-спектроскопии, для фракций Сх всех нефтей наблюдали полосы поглощения, характерные для группы —NH пиррольного кольца (3460 см ). В спектрах спиртобензольных фракций азотистых концентратов (СаиС ) проявились полосы поглощения амидов (3400—3100, 3490 и 1550 см"1) наряду с поглощением в области 1040 см" , соответствующим валентному колебанию 8=0 группы сульфоксидов [43]. Эти последние данные нодтвернодают результаты потенциометрического анализа, согласно которым слабоосновный азот во фракциях и Сх несколько превалирует над общим вследствие присутствия сульфоксидов. Во всех спектрометрированных фракциях в области 3600 и 3580 —3540 см наблюдались полосы поглощения, характерные для ОН-групп свободных и ассоциированных фенолов [40]. Наиболее ярко эти полосы поглощения проявлялись в ИК-спектрах бензольных и спиртобензольных элюатов К-4, что находится в соответствии с результатами потенциометрического титрования кислотных групп. Приведенные данные, характеризующие исходные концентраты азотистых соединений и продукты хроматографического разделения на силикагеле, свидетельствуют о многокомпонентном составе и необхсдимости их дальнейшего дифференцирования. На данном этапе мы ограничились радиоспектроскопическими исследованиями продуктов разделения, которые в совокупности с данными элементного и функционального анализов и средних молекулярных масс позволяют судить о структуре средних молекул. В табл. 5.7 даны вычисленные значения структурных параметров средних молекул (в числителе) и их структурных единиц (блоков) (в знаменателе). Средние молекулы продуктов разделения концентратов всех нефтяных пластов состоят из 1,0—2,4 структурных единиц и имеют невысокую степень ароматичности (4 = GJQ, == == 0,22- 0,38). Наиболее полициклические молекулы характерны для соединений пласта АВ +у, наименее — для БВ . Доля алифатических атомов углерода в этих молекулах наивысшая для нефтяного пласта БВд (Сц = 50—63%) и [c.154]

    Решение ряда принципиальных теоретических проблем органической химии связано с исследованием строения и свойств ароматических соединений. Здесь в первую очередь следует выделить проблему строения бензола. Всестороннему исследованию связи между строением и свойствами ароматических соединений способствовало широкое применение методов физико-химического эксперимента электронной спектроскопии в видимой и в ультрафиолетовой области, потенциометрического титрования, дейтерийобмена, рентгено-и электронографии, дипольных моментов, ядерного магнитного и электронного парамагнитного резонанса и др. [c.407]

    ПМР-спектроскопии. По криоскопическим данным была определена константа образования дисольвата сульфата ТОА с н-октано-лом Рг=235 [180] это значение было затем использовано для описания экстракции серной кислоты ТОА в присутствии н-окта-нола. Методом двухфазного потенциометрического титрования была найдена константа образования моносольвата хлорида ТОА с н-октанолом Pi = 42,7 [181]. Приведенные данные показывают, что прочность сольватов не очень высока, а их состав зависит от природы экстрагируемой кислоты. [c.110]


Смотреть страницы где упоминается термин спектроскопии потенциометрический: [c.593]    [c.383]    [c.45]    [c.92]    [c.2]    [c.368]    [c.47]    [c.89]    [c.60]    [c.360]    [c.134]    [c.107]    [c.160]    [c.165]    [c.72]    [c.85]   
Аналитическая химия серы (1975) -- [ c.84 , c.87 , c.95 ]




ПОИСК





Смотрите так же термины и статьи:

потенциометрическое



© 2024 chem21.info Реклама на сайте