Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислотная последовательность Аминокислоты

Рис. 2.4. Аминокислотная последовательность грамицидина 8. Указаны ферменты, активирующие соответствующие аминокислоты. Рис. 2.4. <a href="/info/31042">Аминокислотная последовательность</a> грамицидина 8. Указаны ферменты, активирующие соответствующие аминокислоты.

    Порядок чередования аминокислотных остатков в полипептидных цепях (называемый первичной структурой) впервые именно таким образом был установлен для белка инсулина. Молекула инсулина имеет молекулярную массу 5733. Она состоит из двух полипептидных цепей, одна из которых содержит 21 аминокислотный остаток, вторая 30. Последовательности аминокислот в короткой и длинной цепях были определены в период 1945—1952 гг. Сенгером и его сотрудниками. Обе цепи в молекуле инсулина соединены дисульфидными связями S—S, образованными между остатками цистина. [c.393]

    Образование продуктов, обладающих флуоресценцией (сами реагенты не флуоресцируют), позволило значительно увеличить чувствительность метода. С флуорескамином открывается 10 —10 " молей аминокислот. В отличие от нингидрина реакции не мешает присутствие аммиака. Реакция протекает при комнатной температуре при pH 7,0— 9,0. Поскольку флуорескамин в водной среде разрушается (в течение нескольких секунд), для приготовления раствора используют безводные жидкости (ацетон, ацетонитрил, диметилсульфоксид и др.). Продукт реакции стабилен в течение нескольких часов. Пептиды и белки, проявленные флуорескамином, могут использоваться для определения аминокислотного состава и аминокислотной последовательности. [c.130]

    Правилами ШРАС/ШВ [12] приняты английские трехбуквенные сокращения тривиальных названий аминокислот, начинающиеся с прописной буквы Gly, Ala, Туг и т. д. (применяемые либо для всей молекулы аминокислоты, либо для ее радикала) особенно часто такие сокращения применяются для описания аминокислотной последовательности в пептидах и белках. Разрешена также [13] и однобуквенная система сокращений, но она применяется гораздо реже. Имеются также правила номенклатуры, касающиеся часто применяемых сокращений для синтетических пептидов [14], для синтетических модификаций природных пептидов [15], пептидных гормонов [16] и белков, содержащих железо и серу [17]. [c.187]

    Изучение вопроса о влиянии данной аминокислоты на конце растущей полипептидной цепи на вероятность присоединения следующей аминокислоты привело к интересным выводам. М. Кальвин предположил, что современная система кодирования аминокислот ведет свое начало от древней системы синтеза, при которой растущая аминокислотная последовательность сама себя определяла. В связи с этим он упоминает о синтезе пентапептидов в бактериях, который протекает без участия обычного матричного механизма. [c.382]


    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    АНАЛИЗ ПОЛИПЕПТИДОВ. Полипептиды, как и прочие амиды, можно гидролизовать водными растворами кислот или щелочей. После полного гидролиза полипептида можно при помощи аминокислотного анализатора установить его качественный и количественный аминокислотный состав, но не точную последовательность аминокислот. Если перед гидролизом обработать полипептид реактивом Сэнгера, то можно будет затем идентифицировать его N-концевую аминокислоту, так как она даст устойчивое окрашенное производное анилина, которое не разрушается при гидролизе. [c.402]

    Glu-Ala-Phe-Pro-Leu-Glu-Phe-ОН (мол. м. ок. 4500 букв, обозначения см. в ст. Аминокислоты). Различия в аминокислотной последовательности А. разных видов животных и человека локализуются между 13 и 39 аминокислотными остатками. [c.37]

    В табл. 2-2 приведены структурные формулы боковых цепей аминокислот, обычно встречающихся в белках (формула пролина приведена полностью). Даны также сокращенные трехбуквенные обозначения аминокислот, используемые при выписывании аминокислотных последовательностей пептидов и белков, а также однобуквенные сокращения, принятые в работах по эволюции белков и при составлении программ для вычислительных машин. [c.83]

    Можно написать аминокислотную последовательность пептида и затем соединить первую и последнюю аминокислоты длинной линией выше илн ниже последовательности  [c.88]

    Информация, необходимая для построения определенной аминокислотной последовательности, содержится в дезоксирибонуклеиновой кислоте (ДНК). Молекула ДНК является полинуклеотидом, образованным основаниями аденином (А), гуанином (G), цитозином (С), тимином (Т), остатками фосфорной кислоты и 2-дезоксирибозой в качестве углеводного компонента. Все ДНК построены как регулярные двойные спирали, структура которых стабилизирована водородными связями между комплементарными парами оснований А — Т и О — С. В ДНК каждые три следующих один за другим нуклеотида (триплетный код) кодируют одну аминокислоту (189 — 192]. Для 20 протеиногенных аминокислот существуют 64 кодовые единицы (кодона), из которых по 6 приходится на аминокислоты Leu, [c.391]

    Генетическая информация передается от родительской клетки к дочерней путем репликации (синтеза) ДНК- Генетическая информация сохраняется в ДНК до тех пор, пока не понадобится, а затем превращается в инструкцию по синтезу белка специфической последовательности в процессе транскрипции. Генетическая инструкция переписывается на полимерную молекулу РНК (мРНК). Она в свою очередь взаимодействует с соответствующими специфическими амииоацил-тРНК, в результате чего происходит последовательное присоединение аминокислот. Перевод генетической информации из РНК в специфическую аминокислотную последовательность называется трансляцией. [c.108]

    Исключительно важные исследования в этой области, связывающие химию белка с химией нуклеиновых кислот, осуществлены в СССР Ю. А. Овчинниковым с сотр. В частности, из Е. СоИ выделены полинуклеотидфосфорилаза, ДНК-полимераза-1, полинуклео-тидлигаза. Определена полная последовательность аминокислот цитоплазматической аспартатаминотрансферазы, состоящей из 824 аминокислотных остатков. [c.180]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]


    Разработана остроумная генетическая система, позволяющая заменять в клетках дрожжей нормальные гены на их модифицированные аналоги с помощью генно-инженерных манипуляций. В результате в клетке синтезируются измененные белки. Таким образом было показано, что гистоны Н2А и Н2В дрожжей можно лишить 10—30 концевых аминокислот и что это не влияет на сборку нуклеосом и структуру хроматина и вообще на жизнеспособность клеток. Это особенно странно, если учесть высокую консервативность аминокислотных последовательностей гистонов. Возможно, Ы-концевые участки нуклеосомных гистонов необходимы не для сборки нуклеосом, а для другой цели, например для транспорта гнстонов из цитоплазмы в ядро. [c.241]

    Частичным гидролизом было показано, что биологически активной частью р-кортикотропина является часть молекулы с N-конца, содержащая 24 аминокислотных остатка в настоящее время известно, что активность исчезает после отщепления 23-го остатка аминокислоты. Аминокислотная последовательность для гормона, выделенного из других источников, определена группой Уайта2 (АКТГ свиньи), группой Ли (АКТГ барана) и группой Лернера (АКТГ человека). При этом было показано, что все эти гормоны отличаются от р-кортикотропина только в неоказывающей влияния части молекулы — после 23-го остатка. [c.701]

    Результаты многочисленных исследований свидетельствуют о том что генетический код, установленный для Е. соИ, является универсальным. Так, например, в лабораториях Уитмана и Френкель-Конрата препарат РНК, экстрагированный из вируса табачной мозаики, обработали азотистой кислотой известно, что при этом происходит дезаминирование многих остатков цитозина с образованием урациловых остатков, в результате чего кодоны U U (серин) превращаются в UUU (фенилаланин). Аналогичным путем из кодона ССС (пролин) может образоваться СиС (лейцин). Оказалось, что при заражении растений табака препаратом РНК, обработанной азотистой кислотой, аминокислотная последовательность вирусного белка оболочки, выделенного из мутантных штаммов, действительно меняется [22]. Причем многие из происшедших изменений можно было точно предсказать исходя из данных, приведенных в табл. 15-3. Сходным образом, замены аминокислот в дефектных молекулах гемоглобина (рис. 4-17) в большинстве случаев могут быть обусловлены изменением только одного основания. Так, гемоглобин S может образовываться в результате одного из следующих изменений в седьмом кодоне GAA(Glu) GUA(Val) или GAG(Glu)- ->GUG(Val). Еще один аргумент в пользу универсальности генетического кода состоит в способности рибосом и молекул тРНК из Е.соН осуществлять трансляцию цепи мРНК, кодирующей синтез гемоглобина, и синтезировать при этом полноценный гемоглобин [23]. [c.195]

    Вторая часть доказательства коллинеарности между нуклеотидной последовательностью в ДНК и последовательностью аминокислот в белках включала в себя определение полной аминокислотной последовательности триптофансинтетазы и картирование пептидных фрагментов мутантных ферментов (гл. 2, разд. 3,2). Пептидные карты позволили идентифицировать дефектные пептиды и точно установить природу аминокислотных замещений в большом числе различных ауксотрр-фов по триптофану. Когда это было сделано, оказалось, что мутациям, локализованным очень близко друг к другу, соответствовали аминокислотные замещения в непосредственно (или очень близко) прилегающих друг к другу участках полипептидной цепи. [c.251]

    Отличительной чертой гистонов, богатых аргинином, является удивительное постоянство их аминокислотной последовательности. Так, ги-стон Н4 из пропростков гороха отличается от аналогичного гистона из тимуса крупного рогатого скота всего лишь двумя аминокислотами. Что же касается богатого лизином гистона Н1, то его последовательности почти присуща видовая специфичность. [c.302]

    Для полного воссоздания первичной структуры полипептида необходимо идентифицировать аминокислоты, которые входят в состав каждого из фрагментов, получепных в результате неполного гидролиза, и решить, в какой последовательности эти аминокислоты соединяются друг с другом в исходном полипептиде. Один из подходов к решению этой проблемы состоит в том, что проводят полный гидролиз фрагментов, идентифицируют составляющие их аминокислоты, а затем осуществляют химический синтез фрагментов. Другой путь — избирательный гидролиз, при котором от фрагмента отщепляют по одной аминокислоте на каждом этапе, чаще всего при помощи ферментов из подл елудочной железы, так называемых карбоксипептидаз. Эти ферменты способны гидролизовать только С-концевые аминокислоты и, следовательно, постепенно разрушать нептидный фрагмент с С-конца. Нередко достаточно бывает проанализировать различные концентрации аминокислот полученных под действием карбоксипептидазы, которая гидролизовала фрагмент в течение постепенно возрастающих промежутков времени, чтобы получить необходимые данные относительно аминокислотной последовательности. [c.403]

    Для определения С-концевых остатков чаще всего используют ферментативный гидролиз карбоксипептидазами, к-рые специфически расщепляют пептидные связи, образованные С-коицевыми остатками. Поскольку после отщепления концевых остатков фермент атакует послед, пептидные связи, измерение скорости отщепления отдельных аминокислот позволяет анализировать также и С-концевую аминокислотную последовательность. [c.250]

    Установлена первичная структура С. человека и неск. видов животных. С. разной видовой принадлежности, обладая большими нли меньшими различиями в аминокислотной последовательности, проявляют четкую структурную гомологию друг с другом. Все они содержат один остаток триптофана и 4 остатка цистеина. Последние образуют в молекуле два дисульфидных мостика, к-рые формируют две петли-большую, включающую центр, участок аминокислотной последовательности (в С. человека между цис-теином-54 и цистеином-165), и малую (на С-концевом участке между цистеином-182 и цистеином-189). Высокое содержание в молекуле С. остатков неполярных аминокислот обусловливает большую склонность к образованшо в р-ре димеров и более крупных агрегатов. [c.383]

    Молекула Т. человека (мол. м. ок. 40 тыс.) состоит из двух пептидных цепей (А и Б), содержащих соотв. 36 и 259 аминокислотных остатков, связанных одной дисульфидной связью. Каталитич. участок активного центра фермента расположен в Б цепи, аминокислотная последовательность к-рой гомологична структуре трипсина, химотрипсина и эластазы (фермент, катализирующий гидролиз белка эластина -компонента волокна соединит, ткани). Каталитич. центр Т. содержит характерный для сериновых протеаз фрагмент Gly — Asp — Ser — Gly — Gly — Pro (букв, обозначения см. в ст. Аминокислоты), [c.13]

    Неполярный участок связывания, расположенный вблизи каталитич. центра Т., обусловливает преим. расщепление ферментом субстратов, содержащих пептидные связи, образованные аргинином и лизином, негкэсредственно связанными с остатком ггоолина или с др. неполярными остатками аминокислот. Вблизи каталитич. центра располагается уникальная аминокислотная последовательность Туг — Pro — Pro — [c.13]

    Разнообразие методов синтеза пептидов дало возможность получать пептиды самого различного состава и с любой последовательностью аминокислот. Однако, применение всех этих методов синтеза тре-.бует освоения большого числа разных реакций. Неудивительно поэтому, что исследователи стремятся найти такой синтез, который позволил бы получать пептиды одним общим путем, подобно тому, как большинство аминокислот можно получать малоновым синтезом. Недавно было показано, что универсальным, по-видимому, является кар-бодиимидный метод. Он позволяет нанизывать аминокислотные остатки с карбоксильного конца пептидов или соединять между собою пептиды различной длины и состава без предварительной активации карбоксильной группы. [c.496]

    Напомним, что последовательности аминокислот в цепях белков всегда точно заданы генетически. Знание аминокислотной последовательности очень важно для понимания поведения специфических белков. По этой причине в последнее время усилия многих биохимиков направлены на определение последовательностей сотен бел/сов. Одним из крупных белков, для которых эта задача решена, является у-имму-ноглобулин человека, содержащий 446 остатков в одной цепи и 214 — в другой. Полная аминокислотная последовательность другого белка приведена на рис. 2-1. На рис. 2-2 даны последовательности некоторых небольших пептидных гормонов и антибиотиков. [c.85]

    Какова природа поверхностных антигенов, ответственных за отторжение. клеток Т-лимфоцитами Очевидно, они представляют собой гликопротеиды [30, 88—89а], причем с т- клетками взаимодействуют скорее всего белковые, а не углеводные участки антигена. Антигены НЬА содержат две тяжелые полипептидные цепи с мол. весом 46 ООО и две легкие — с мол. весом 12 000 [89Ь]. Легкие цепи идентичны Ра-мик-роглобулину — белку, встречающемуся обычно в небольших количествах в сыворотке крови и в моче. Последовательность аминокислот в Рг-микроглобулине очень близка к последовательности константных участков иммуноглобулица О (дополнение 5-Е), в связи с чем напрашивается предположение о структурном сходстве антигенов тканевой совместимости и антител. Однако изучение аминокислотных последовательностей антигенов Н-2 мыши и НЬА человека только начинается [89с—(1], и делать выводы об их строении еще рано. [c.378]

    Первое сообщение о расшифровке полной аминокислотной последовательности IgG появилось в 1969 г."" Оказалось, что обе тяжелые цепи белка содержат по 446 аминокислот, а обе легкие — по 214. Таким образам, всего в мо-лекуле 1 0 содержится 1320 аминокислот. Исследование иммуноглобулина IgM. показало, что более длинные тяжелые цепи этого белка содержат по 576 амииокислот . У всех иммуноглобулинов тяжелые и ле1 кие цепи связаны между собой дисульфидными связями. Наличие дисульфидных связей внутри цепей заставляет их складываться в петли. Для IgM характерна полимеризация, обусловленная наличием дополнительных дисульфидных связей между молекулами этого белка и приводящая к образованию пентамеров, которые можно легко увидеть при помощи электронного микроскопа. [c.382]

    Определение аминокислотной последовательности иммуноглобулинов привело к неожиданныхМ результатахМ. Одни участки молекул разных антител имеют сильно различающиеся последовательности (вариабельные участки), тогда как последовательность других участков у них почти не меняется (константные участки). Молекулу антитела можно в соответствии с этими данными разделить на участки, или домены. Вариабельные участки, у Ы-концов легких и тяжелых цепей, принято обозначать соответственно Уь и Ун, а константные участки — Сь и Сн- При исследовании Сн-участков было обнаружено, что приблизительно через 110 остатков большая часть аминокислотной последовательности повторяется. Константный участок тяжелой цепи молекулы IgG состоит из трех таких доменов (Сн1, Сн2 и СнЗ), аминокислотная последовательность которых весьма сходна. В молекуле IgM имеется еще и четвертый Сн-домен. Эти данные позволяют предполагать, что в процессе эволюционного развития иммуноглобулинов происходила последовательная дупликация короткого гена, кодирующего синтез последовательности приблизительно из 110 аминокислот. [c.383]

    Используя технику клонирования ДНК [599] и анализа нуклеотидных последовательностей [600], Наканнши и сотр. foOl] установили нуклеотидную последовательность мРНК-предшественника. Нумерация аминокислотной последовательности положительная справа от N-концевой аминокислоты АКТГ, в левую сторону отсчет идет со знаком минус. Белок-предшественник содержит 8 пар основных аминокислот и одну двойную пару -Lys-Lys-Arg-Arg. В этих местах происходит ферментативное расщепление белка с образованием различных пептидов. /3-Липотропин образует С-концевую область и, вероятно, отщепляется непосредственно от предшественника. Общая схема ферментативного расщепления и вид фрагментации к настоящему времени еще не установлены. В отличие от известных последовательностей /3-липотропинов свиньи и овцы /3-липотропин теленка содержит между 35 и 36 аминокислотными остатками два дополнительных (-Ala-Glu-) этим объясняются различные длины цепей липотропинов (см. схему). Анализ на ЭВМ аминокислотной последовательности отрицательной части предшественника дал интересный результат между позициями —55 и —44 найдена аминокислотная последовательность -Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asn-Arg-Phe-Gly-, имеющая большое сходство с а- н /3-МСГ. Так как в области аминокислотной последовательности предшественника от —111 до —105 присутствует еще один участок, имеющий структурное сходство с МСГ-пептидами, предполагается существование серии дупликаций гена, аналогично имеющей место в случае иммуноглобулинов. О [c.242]

    Полный синтез глюкагона был связан с большими трудностями из-за сложной аминокислотной последовательности. Это высокое содержание гидроксиаминокислот, наличие метионина и триптофана, концевые аминокислоты треонин и гистидин, трудные для синтеза последовательности -Arg-Arg- и -Asp-Thr-, а также недостаток мест разделения на фрагменты. [c.270]

    Установление первичной структуры начинается с определения аминокислотного состава и молекулярной массы выделенного и очищенного белка. Белки, состоящие из нескольких полнпептидных цепей, разделяются с помощью денатурирующих реагентов (концентрированный раствор мочевины или ДСН) на мономеры. Дисульфидные мостики расщепляют восстановлением меркаптоэтанолом. Для предотвращения дисульфидного обмена и окисления образующихся свободных меркаптогрупп их блокируют каким-либо методом, например алкилированием иодуксусной кислотой с образованием 8-карбоксиметильного производного или цианэтилированием акрилонитрилом. После определения Ы- и С-концевых аминокислот полипептидная цепь расщепляется химически или ферментативно (в нескольких вариантах) на меньшие перекрывающиеся фрагменты. Для каждого фрагмента устанавливается аминокислотная последовательность. И наконец, комбинируя отдельные последователькости, приходят к полной последовательности исходной полипептидной цепи. [c.364]


Смотреть страницы где упоминается термин Аминокислотная последовательность Аминокислоты: [c.147]    [c.54]    [c.144]    [c.67]    [c.587]    [c.94]    [c.492]    [c.38]    [c.247]    [c.517]    [c.103]    [c.387]    [c.469]    [c.482]    [c.270]    [c.120]    [c.94]    [c.278]   
Органическая химия (1979) -- [ c.499 , c.504 , c.647 , c.650 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислотные последовательности



© 2025 chem21.info Реклама на сайте