Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РЗЭ спектральное галлия

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Нитрид галлия. Нитрид галлия имеет запрещенную зону 3,5 эВ с прямыми переходами и в принципе позволяет получить излучение во всем спектральном диапазоне видимого излучения. В 1969 г. слои нитрида галлия были приготовлены путем эпитаксиального осаждения на сапфировую подложку [94], До настоящего времени получен только нитрид галлия низкого удельного электросопротивления га-типа попытка легировать нитрид галлия до р-типа (например, цинком) приводит к образованию материала с высоким сопротивлением. Электролюминесценция была получена при приложении поля между двумя точечными контактами к высокоомному слою нитрида галлия, легированного цинком. Излучение наблюдалось в ультрафиолетовой, голубой и зеленой областях спектра. [c.149]

    Галлий был одним из трех элементов, свойства которых очень подробно предсказал.в 1871 г. Д. И. Менделеев до их открытия. Для галлия Д.И. Менделеев предсказал даже метод, каким он будет открыт — спектральным. Тогда же Д. И. Менделеев указал, что инди(1 не двухвалентен (как считали, учитывая его совместное -нахождение с цинком) и соответственно исправил принятую в то время атомную массу In. [c.344]

    Спектральное определение (разд. 37.2.1.2, см. также гл. 40). Легколетучие соединения галлия и индия окрашивают пламя бунзеновской горелки в фиолетовый цвет [Я,оа=417,2 нм (403,3 нм) Л,т =451,1 нм], а соединения таллия—в зеленый. У таллия наблюдается интенсивная зеленая линия при =535,1 нм. [c.592]

    Галлий - один из трех элементов, свойства которых очень подробно предсказал Д. И. Менделеев ( 1871 г.) до их открытия, Д. И. Менделеев предсказал даже метод, каким будет открыт галлий - спектральный. Тогда же Д. И. Менделеев указал, что индий в соединениях не двухвалентный (как считали, учитывая его совместное нахождение с цинком) и соответственно исправил принятую я то время атомную массу этого элемента. [c.356]

    Относительное стандартное отклонение и его распределение по стадиям анализа при спектральном определении примесей в арсениде галлия. Предварительное концентрирование — отгонка основных элементов в виде бромидов [c.198]

    Это позволяет отогнать все или большую часть примесей, которые испаряются легче, чем основа. Этому способствует также введение в пробу носителя. Его температура кипения имеет промежуточное значение между температурой кипения примесей и основы пробы. Температура электродов определяется температурой кипения носителя, что способствует полному испарению примесей и подавляет поступление в разряд основы до тех нор, пока в электроде есть носитель. Например, при анализе урана в виде закиси-окиси СзО добавляют носитель—окись галлия, вес которой составляет 2% от веса пробы. Это повышает интенсивность спектральных линий 33 элементов, присутствующих в виде примесей в уране. Большинство из НИХ ПОЛНОСТЬЮ испаряется вместе с носителем до начала поступления в разряд урана. [c.251]


    Анализ галлия и мышьяковистого галлия на содержание марганца проводят активационным [129, 141, 1283], спектральным и химико-спектральным [269, 282, 405, 447, 587, 591] методами. [c.161]

    В галлии, его сплавах и арсениде галлия Sb определяют экстракционно-фотометрическим [63, 64, 65, 661, 662], полярографическим [246, 293, 586], активационным [640, 825, 1375] и спектральным [629] методами. По одному из них [63, 64] для определения Sb > 5-10" % (Sr = 0,08) в галлии ее отделяют экстракцией хлороформным раствором диэтилдитиокарбаминовой кислоты, затем отделяют ее от Sn и Мо экстракцией эфиром в виде пиридин-иодидного комплекса и фотометрируют в виде комплекса с фенил-флуороном. По другому методу [661, 662] Sb выделяют цементацией на оловянном электроде и определяют с применением бриллиантового зеленого. [c.127]

    От анализируемой закиси-окиси урана квартованием отбирают пробу весом 5,5—6 г, которую прокаливают в муфельной печи при 800° в течение 30 мин. От этой пробы отбирают навеску в 5 г, в которую вводят носитель в количестве 150 лг. Носитель представляет собой смесь спектрально чистых окиси галлия и закиси-окиси урана в отношении (I 12) . Смесь тщательно растирают в агатовой ступке в течение 15 мин. От приготовленной смеси пробы с носителем отбирают навеску 250 ме. Применение носителей, по данным авторов [151 ], увеличивает интенсивность линий бора. Условия испарения пробы температура нагревания — 1800°, время установления этой температуры — 20 сек., продолжительность испарения при этой температуре — 20 сек. Наилучшая воспроизводимость анализа имеет место в случае, если электрод-приемник имеет форму, изображенную на рис. 58г. Источник спектра для анализа конденсата — дуга постоянного тока, сила тока — Ю а. Электрод с конденсатом служит анодом. Спектрограф ИСП-22, экспозиция— [c.364]

    Галлий (СаАз Спектральный [18, 97, 155, 253, 288, 302] [c.171]

    Для определения поверхностных загрязнений пленок арсенида галлия предложен химико-спектральный метод [205], основанный на последовательном снятии полирующим травителем двух тонких слоев одинаковой толщины и использовании внутреннего слоя в качестве холостого опыта к наружному слою. [c.199]

    Спектральные методы имеют большое значение для определения галлия (а также индия и таллия) при содержании < 1 %. [c.216]

    Для определения примесей в арсениде галлия также широко используются радиоактивационные методы, позволяющие определять ряд примесей, которые не могут быть определены спектральными методами. Кроме того, радиоактивационные методы, как правило, характеризуются большей чувствительностью. [c.194]

    Описан ряд химико-спектральных методов анализа пленок арсенида галлия на примеси [160, 205, 211]. [c.198]

    Метод [160] основан на электрохимическом растворении пленки в НС1 (1 10) с последующим упариванием раствора и спектральным анализом остатка. В методе [211] снимают тонкие эпитаксиальные слои арсенида галлия травлением метанольным раствором брома полученный раствор выпаривают с НС1, сухой остаток растворяют в 10 Ж НС1 и хроматографируют в колонке с фторопластовой насадкой с применением м-децилового спирта в качестве неподвижной фазы. Примеси элюируют, элюат выпаривают и помещают в нагретый полый катод. [c.198]

    При анали.зе различных объектов (см. табл. 22) концентрирование примесей проводят путем отделения основного количества элемента-основы экстракцией различными реагентами, а раствор содержащий примеси (например, в случае анализа таллия), выпаривают или с угольным порошком, содержащим 4% Na l [156], или с угольным порошком, содержащим в качестве усиливающей добавки галлий и кобальт (последний служит внутренним стандартом), или на угольном порошке, содержащем 5% Iii при анализе фосфида индия [447]. Проводят спектральный анализ концентрата. При анализе воды, кислоты п легколетучцх соединений (табл. 24) обогащение проводят путем выпаривания. Прх меси ири этом [c.109]

    Для контроля стехиометрии арсенида галлия предложен ряд методов, в том числе метод с применением разряда в полом катоде для количественного спектрального определения сверхстехиометрических количеств мышьяка [352] и фотометрический метод определения свободного мышьяка [422]. [c.199]

    Приготовление э т а л о и о в. В качестве основы для приготовления синтетических станда[)тов применяется чистый кварц SiOu, предварительно проверенный спектрально. Галлий в стандарты вводят в виде ОзгОз. Головной эталон, содержащий 3% Ga, готовят перемешиванием в агатовой или яшмовой ступке соответствуютцпх навесок окиси галлия и кварца. Растирание производят со спиртом. Последовательным разбавлением головного эталона кварцем приготовляют серию эталонов с содержанием Ga 1 0,3 0,1 0,03 0,01 0,003 0,001 0,0003 и 0,0001%. [c.233]


    Закон периодичности и периодическая система элементов сыграли важную конструктивную роль при проверке и уточнении свойств многих элементов. Однако наотоящий триумф периодической системы Д. И. Менделеева был связан с открытием предсказанных им элементов. В 1875 г. французский химик П. Лекок де Буа-б о д р а н, исследуя цинковые руды методами спектрального анализа, обнаружил следы неизвестного элемента. Открытие этого элемента, названного галлием, быть может, прошло бы незаметным, если бы некоторое время спустя автор не получил письмо от русского ученого, в котором утверждалось, что плотность нового элемента должна [c.20]

    ИНДИЙ (Indium — название от характерных для пего спектральных синих (цвет индиго) линий) In — химический элемент III группы 5-го периода периодической системы элементов Д. И. Менделеева, п. и. 49, ат. м. 114,82, принадлежит к группе рассеянных элементов. И. открыт в 1863 г. Ф. Рейхом и Т. Рихтером. Это очень мягкий, серебристобелый металл, химический аналог галлия, т. пл. 156,4° С, легко растворяется в кислотах, устойчив к действию щелочей. В соединениях И. трехвалентен. Получают И. из отходов свинцово-цинкового и оловянного производств элек- [c.107]

    Табл. 2.3. иллюстрирует вклад ко1щеитрироваиия и спектрального анализа в погрешность определения ряда элеме1гтов в арсе-пиде галлия. Концентрирование примесей производилось предварительной отгонкой основных элементов в виде бромидов. [c.198]

    Индий In (лат. Indium). И.-— элемент III группы 5-го периода периодич. системы Д. И. Менделеева, п. н. 49, атомная масса 114,82. Природный И. состоит из двух изотопов I In (4,33 %)и Щn (95,67 %). И. был открыт в 1863 г. Ф. Рейхом и Т. Рихтером при исследовании цинковой обманки и назван по характерным синим (цвета индиго) спектральным линиям. И. был предсказан Д. И. Менделеевым. И.— рассеянный элемент, серебристо-белый металл, химический аналог галлия. В соединениях проявляет степень окисления +3. При нагревании окисляется до 1пгОз. Растворяется в сильных кислотах. Получают И. из отходов свинцово-цинкового и оловянного производства, в которых его содержание колеблется от десятых до тысячных долей процента. И. используют для антикоррозионных покрытий, для изготовления легкоплавких сплавов. Соединения И. применяют в полупроводниковой технике. [c.56]

    Са галлий 1875 П. Лекок де Буабодран (Франция) Предсказан Д. И. Менделеевым под названием экаалю-миний обнаружен спектральным методом в цинковой обманке и выделен в виде металла [c.164]

    ИК-излучение арсенида галлия может быть преобразовано в видимое с помощью так называемых антистоксовских люминoфoJIoв (см. раздел IV.4), фторидов и оксисульфидов р. 3. э. Эти люминофоры возбуждаются в области 900—1000 нм и излучают в красной, зеленой и голубой частях спектра. Таким образом, используя диоды из арсенида галлия, покрытые антистоксовскими люминофорами, можно получить видимое излучение во всей спектральной области. Такие светодиоды имеют ряд особенностей. Они излучают в узкой полосе, характерной для редкоземельных ионов Ег + (зеленое и красное свечение) и Тш + (синее), и имеют степенную зависимость яркости свечения от плотности тока. Поэтому высокая эффективность может быть достигнута только при очень больших плотностях тока. [c.150]

    В индии чаще всего ЗЬ определяют экстракционно-фотометрическими [64, 65, 661, 662] и спектральными [682, 814, 815, 905, 1189, 1267] методами. В одном из фотометрических методов [668, 806] ЗЬ отделяют от основы экстракцией хлороформным растьс-ром диэтилдитиокарбаминовой кислоты. Метод позволяет определять до 5-10 % ЗЬ = 0,1 0,2). Несколько проще и менее трудоемким является другой фотометрический метод [661, 662], включающий выделение ЗЬ цементацией на оловянном стержне, растворение выделенной ЗЬ, экстракцию ее в виде гексахлоростибата бриллиантового зеленого и измерение оптической плотности экстракта. Метод рекомендован для определения 8Ь 5-10 % (5г 0,10) в индии и его сплавах с цинком и галлием. [c.132]

    Чучалина Л. С. Химико-спектральный метод анализа галлия, сурымы и золота высокой чистоты на примеси с экстракцией основы р,р -дц-хлордиэтиловым эфиром. Кандидатская диссертация. Новосибирск,. Ин-т неорган. химии СО АН СССР, 1972. [c.197]

    При анализе тантала высокой чистоты используют метод распределительной хроматографии в системе 100%-ный ТБФ — 1М ПР + 1МНК0зна колонке пористого фторопласта-4 [107]. Электрохимическое отделение основы проводят при определении Сг и других примесей в металлической меди и ее соединениях [23]. Электрохимическое концентрирование Сг, Мп, РЬ, Ре, В1, Т1, Мо, 8п, V, С(1, Си, N1, Со, Ag на графитовом неподвижном катоде применяют при анализе природных вод [212]. Химико-спектральные методы определения Сг и других примесей используют также при анализе чистого мышьяка [808], гипса и ангидрита [683], серы высокой чистоты [379], кадмия и цинка высокой чистоты [450, 451], арсенида галлия [302], едких щелочей [227], винной кислоты [335]. [c.89]

    Методы ионообменной хроматографии используют для нейтронно-активационного анализа чистых веществ — алюминия [224, с. 277], двуокиси кремния и кварца [176], циркония [53], биологических образцов [136, с. 319, 321 224, с. 278], химико-спектральном анализе галлия и арсенида галлия [454], сурьмы [540], непту- [c.141]

    Разряд в полом катоде использован для количественного спектрального определения сверхстехиометрических количеств мышьяка в арсениде галлйя [352]. Метод основан на различии в упругости паров мышьяка, содержащегося в виде арсенида галлия, и сверх-стехиометрического мышьяка. [c.93]

    Для определения примесей в арсениде галлия наиболее часто испо.т1ьзуются спектральные методы [13, 258, 260]. Для повышения чувствительности определения примеси предварительно концентрируют различными методами, в том числе экстракцией [87, 365], ионным обменом [309, 414], отгонкой элементов основы [292, 402], соосаждением примесей с органическими и неорганическими носителями [350, 351]. [c.194]

    Спектральный метод определения сверхстехиометрических количеств мышьяка основан на различии в уиругости паров арсенида галлия и элементного мышьяка. [c.199]

    Арсенид индия. Для определения нримесей в арсениде индия, подобно тому, как это имеет место в случае арсенида галлия, наибольшее практическое значение имеют спектральные методы [305, 462, 464, 966]. [c.200]

    Определение кобальта спектральным методом после обога-ш,ения экстракцией пирролидиндитиокарбаминатов [637]. Авторы рекомендуют проводить обогащение микроэлементов с селективным отделением железа, алюминия, щелочноземельных и щелочных металлов. Анализируемую пробу переводят в растворимое состояние каким-либо известным методом. К 25 мл раствора пробы в 7 N соляной кислоте прибавляют 1 каплю 30%-ного раствора перекиси водорода и взбалтывают с равным объемом метилозобутилкетона 30 сек. Органический слой содержит около 94% железа в виде хлорида, а также хлориды галлия, олова, ванадия, молибдена и др. Его взбалтывают 1 мин. с 25 мл водного раствора аскорбиновой кислоты для восстановления трех- [c.212]

    Другой вариант метода концентрирования с использованием пирролидиндитиокарбамината натрия состоит в следующем [1365]. Почву обрабатывают смесью растворов фтористоводородной и хлорной кислот. Остаток растворяют в соляной кислоте. К раствору прибавляют 20 м.л 15%-ного раствора сульфосалициловой кислоты, нейтрализуют раствором гидроокиси аммония при рн 4,8, приливают 15 м.л 5%-ного раствора пирролидиндитиокарбамината натрия и экстрагируют три раза хлороформом. Из объединенных экстрактов удаляют хлороформ выпариванием и остаток используют для спектрального определения кобальта и других микроэлементов — серебра, меди, кадмия, цинка, галлия, индия, свинца, олова, ванадия, молибдена, никеля, железа, палладия. [c.213]


Смотреть страницы где упоминается термин РЗЭ спектральное галлия: [c.183]    [c.20]    [c.473]    [c.145]    [c.141]    [c.133]    [c.914]    [c.921]    [c.921]    [c.21]    [c.75]    [c.213]    [c.173]   
Аналитический контроль в металлургии цветных и редких металлов (1988) -- [ c.216 ]




ПОИСК





Смотрите так же термины и статьи:

Галлай

Галлий

Галлы



© 2024 chem21.info Реклама на сайте