Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан металлургия

    Значение того или иного металла в народном хозяйстве страны принято оценивать долей его производства в общем производстве металлов или в производстве железа и его сплавов. Удельный вес различных металлов существенно меняется со временем. Появление новых отраслей техники (ракетостроение, атомная энергетика, электроника и др.) вызывает потребность в материалах с новыми свойствами и стимулирует развитие новых направлений в металлургии. Так уже после 1945 года промышленное значение приобрели такие металлы как титан, молибден, цирконий, ниобий. В настоящее время в цветной металлургии производятся более 30 металлов, являющихся редкими элементами, и сотни их сплавов. Поэтому доля производства различных металлов со временем меняется. Например, за последние годы существенно возросла доля производства алюминия, но практически не изменилась доля производства меди. [c.4]


    Формирование структуры углеродного материала с титаном и карбидом титана в процессе обжига. Лукина Э. Ю., Косин-с к и й К. А., Д е м и н А. В. В сб. Конструкционные материалы на основе углерода , № 10. М., Металлургия , 1975, с. 100—105. [c.263]

    Сравнительно новым направлением в металлургии является так называемая хлорная металлургия. В этом методе руды подвергаются хлорированию и нужные элементы извлекаются из сырья в виде хлоридов. Хлориды разделяют и в дальнейшем подвергают восстановлению. Таким путем, в частности, получают титан и другие металлы. [c.265]

    Впервые металлы титан и цирконий были использованы в металлургии в качестве раскислителей и дегазаторов, так как они при высоких температурах активно соединяются с азотом, кислородом и другими газами и способствуют получению плотных, однородных слитков. [c.127]

    В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др. [c.181]

    Металлургию делят на ч е р н у ю (получение железа и его сплавов) и цветную (получение цветных металлов). Цветная металлургия занимается получением легких (алюминий, магний, титан, щелочные металлы), тяжелых (медь, свинец, цинк, олово) и благородных (золото, серебро, платиновая группа) металлов. Современная металлургия получает более 75 металлов и много- [c.142]

    По химическим признакам среди металлов выделяют активные (ЩМ, ЩЗМ, РЗЭ) и инертные, или благородные (ПМ, титан и др.). Важной является классификация по способу получения металлы бывают самородными или входят в состав руд, где они находятся в окисленном состоянии. Восстановление из руд ведут металлотермическим способом, используя активные металлы (натрий, кальций, магний и др.), углерод, водород, приемы порошковой металлургии, электролиз растворов или расплавов и т. д. [c.255]

    Титан и цирконий имеют большое значение для металлургии. Главные свойства титана и его сплавов, способствующие все более широкому их применению, — высокая жаростойкость и жаропрочность (способность сохранять механические свойства при повышенных температурах). Благодаря этому Т1 и его сплавы используются в самолето- и ракетостроении. Титан почти вдвое тяжелее алюминия, но зато в три раза прочнее его. Это позволяет применять титан в машиностроении. Детали из титана и его [c.317]

    Применение в технике. Титан и его соединения находят применение главным образом в металлургии и в производстве минеральных красок. [c.294]

    Методом хлорной металлургии получают кремний и такие тугоплавкие цветные металлы, как титан, ниобий, тантал и др. Основным процессом при этом является превращение оксидов металлов в хлориды с участием восстановителя, нанример углерода (в виде кокса)  [c.293]


    Для нужд металлургии титан и цирконий обычно выплавляют в виде ферротитана и ферроциркония. В чистом виде титан и цирконий получают путем термической диссоциации йодидов [c.515]

    Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]

    Используемые в металлургии титан и цирконий получают в виде ферротитана и ферроциркония (15—20% или 2г) путем совместного восстановления углем минералов титана или циркония и железных [c.579]

    Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки. [c.413]

    ТОМАШОВ Н.Д. Титан и коррозионностойкие сплавы на его основе. - М. Металлургия, 1985 (IV кв.) — 6 л. — (Защита металлов от коррозии). —30 к. [c.208]

    Металлургия титана, элемента несколько менее известного, чем железо, но стоящего на седьмом месте по распространенности металлов в земной коре, основана на соверщенно иных химических процессах. Наиболее богатые титаном [c.451]

    Металлургия. Ниобий и тантал — важнейшие компоненты металлических жаропрочных сплавов для газовых турбин. Присадки до 5% Nb или сплава Nb и Та повышают жаропрочность, жаростойкость, предел текучести сплавов с алюминием, молибденом, медью, титаном, цирконием. Добавка ниобия (в меньшей степени тантала) к нержавеющей стали (содержаш,ей 8% Ni, 18% Сг) устраняет межкристаллит-ную коррозию стали. Ниобием легируют также инструментальные стали. Его вводят в сталь в виде феррониобия (сплав железа с ниобием, до 60% Nb). [c.61]

    Экстракционно-фотометрическим методом с применением бриллиантового зеленого определяют Sb в железе, чугуне, сталях и сплавах на основе железа [408, 1074, 1351], индиевых сплавах [661, 662], кадмии и его солях [568], меди и ее сплавах [393, 408, 649, 686], минералах [1549], мышьяке [364], никелевых сплавах [686], оловянных рудах и продуктах их обогащения [1063], осадочных породах [1550], почвах [1549, 1550], продуктах свинцово-цинкового производства [626], сточных водах заводов цветной металлургии [784], титане и его окислах [1083, 1467], фармацевтических препаратах [1467], феррохроме и хроме [393], цинке [769], его сплавах с галлием [661], цинковых злектролитах [757]. [c.48]

    Гомогенизацию образцов с низким содержанием кислорода можно проводить при нагревании в высоком вакууме токами высокой частоты или воспользоваться часто применяемым в металлургии титана методом плавки королька в электрической дуге. Используемое для этого простое лабораторное-оборудование описано в работе [3]. Изложенный метод применим вообще ш для получения других низших оксидов элементов, подобных титану, как, например, оксидов циркония, гафния, ванадия, ниобия и др. [c.1459]

    Металлургия. Металлический титан получают, как правило, хлорированием рудных концентратов, приводящим к получению жидкого тетрахлорида, который очищают ректификацией и восстанавливают металлическим магнием  [c.344]

    Гидриды широко применяются в порошковой металлургии. Многие переходные металлы в виде порошков, такие как титан, цирко- [c.6]

    Одной из важнейших причин, ограничивающих применение высоких и сверхвысоких температур в химической технике, яв-ляется трудность подбора конструктивных материалов, устойчивых при этих температурах и одновременно к действию различных химических реагентов. Обычные углеродистые стали легко деформируются уже при температурах выше 00 °С, а пластмассы даже при температурах ниже 250 °С. Жаропрочные стали устойчивы при температурах до 700°С. Специальные сплавы железа с никелем, хромом, молибденом, кобальтом, титаном и другими тугоплавкими металлами, применяемые в химической промышленности, устойчивы до 800—900 °С. Для осуществления процессов при температурах выше 900—1000 °С в металлургии, в стекловарении, в производстве цемента, карбидов и многих других применяют неметаллические огнеупорные материалы (см. гл. XV). Наиболее распространенные огнеупоры (шамот, динас и другие) применимы для футеровки аппаратов, кладки печей, топок и т. п. при температурах не более 1400—1600 °С. Применение огнеупоров ограничено также их коррозией при действии расплавленных м-е-таллов и шлаков. При температурах до 2000 °С в основной среде используются магнезитовые огнеупоры. Графитовые изделия стойки в восстановительной среде при температурах до 3000 °С. Отсутствие доступных конструктивных материалов, стойких в различных агрессивных средах при температурах выше 1600—2000°С, является основным препятствием для осуществления многих эндотермических высокотемпературных процессов. [c.146]


    В настоящее время редкие металлы получили применение в самых разнообразных областях науки и техники, причем области применения их из года в год расширяются. Это прежде всего объясняется особыми физическими и химическими свойствами редких металлов, так, например, германий является ценнейшим материалом дЛ1 изготовления полупроводниковых приборов, широко применяемых в различных областях радиотехники и электронике. Для этих же целей применяются индий, теллур, селен и другие. Введение редких металлов в стали и в сплавы цветных металлов обеспечило получение материалов, стойких против коррозии, жаропрочных, обладающих большой механической прочностью и другими ценными свойствами. В химической технологии и металлургии принято разделять редкие металлы на следующие технические подгруппы а) легкие литий, рубидий, цезий, бериллий и др б) тугоплавкие титан, цирконий, гафний, ванадий, ниобий, тантал, молибден, вольфрам, рений в) рассеянные галлий, индий, таллий, германий г) редкоземельные скандий, иттрий, лантан и лантаноиды радиоактивные полоний, радий, актиний и актиноиды. [c.419]

    В производстве тугоплавких металлов (вольфрам, титан и другие) применяется метод порошковой металлургии, заключающийся в восстановлении металла из окислов в форме порошка. Тугоплавкие сплавы производятся прессованием металлических порошков с последующим спеканием в электрических печах. Температура спекания порошка обычно составляет 2/3 от температуры плавления металла. Температура плавления смесей порошков также бывает ниже плавления чистых металлов. Таким образом, применяя порошковую металлургию, удается понизить температуру, требуемую для получения тугоплавких сплавов, что и является крупным преимуществом порошкового метода. [c.420]

    Чистый магний находит применение а металлургии. Магнийтер-мическим методом получают некоторые металлы, в частности титан. При производстве некоторых сталей и сплавов цветных металлоа магний используется для удаления из них кислорода и серы. Весьма широко применяется магний в промышлеиности органического синтеза. С его помощью получают многочисленные вещества, принадлежащие к различным классам органических соединеинй, а также элемеиторганические соединения. Смеси порошка магння с окислителями употребляются при нзготонленни Осветительных и зажигательных ракет. [c.613]

    Получение простых веществ при восстановлении хлоридов — основа хлорной металлургии. В этом методе руды подвергаются хлорированию и нужные элементы извлекаются из сырья в виде хлоридов. Хлориды разделяют и в да/1ьнейшем подвергают восстановлению. Таким путем, в частности, получают титан. Из рутила TIO2 хлорированием в присутствии восстановителя углерода получают тетрахлорид титана, который затем восстанавливают магнием (в атмосфере аргона или гелия)  [c.194]

    Используемые в металлургии титан и цирконий получают в виде ферротитана и ферроциркония (15—50% Т1 или 2т) путем совмест- [c.499]

    Титан и цирконий имеют большое значение для металлургии. Главные свойства титана и его сплавов, способствующие все более широкому их применению, — высокая жаростойкость и жаропрочность (способность сохранять механические свойства при повышенных температурах). Благодаря этому Т1 и его сплавы используются в самолета-и ракетостроении. Титан лишь немного тяжелее алюминия, но в три раза прочнее его. Это позволяет применять титан в машиностроении. Детали из титана и его сплавов в двигателях внутреннего сгорания снижают массу этих двигателей примерно на 30%. Присадка титана придает стали твердость и пластичность, а присадка циркония — твердость и вязкость. К важнейшим сплавам циркония относятся циркаллоны — сплавы на основе 2г,содержащие небольшие количества Зп, Ре, Сг и N1. Цирконий добавляют к меди, что значительно повышает ее прочность, не снижая электрической проводимости. Качество алюминиевых сплавов также значительно повышается при добавлении к ним циркония. [c.285]

    Большие потенции таятся в плазмохимической технологии производства мелкодисперсных порошков — основного сырья для порошковой металлургии, в восстановлении металлов, синтезе оксидов, карбидов, силицидов, нитридов, карбонитридов, боридов таких металлов, как титан, цирконий, ванадий, ниобий, молибден [13]. Все эти соединения являются сверхтвердыми и жаропрочными материалами, столь необходимыми для современного машиностроения. Уже разработана технология синтеза монооксидов (ЭО) элементов, обычно встречаюпщхся лишь в составе диоксидов ЭОг), например монооксида кремния (510), обладающего ценнейшими электрофизическими свойствами. И несмотря на то, что плазмохимические процессы в таких синтезах характеризуются высокими энергетическими параметрами (7ж5000—6000 К тепловой поток до 5—7 МВт иа 1 см ), процессы эти отличаются не только исключительно высокими скоростями, но и относительно низкими удельными энергетическими затратами — всего лишь около 1—2 кВт-ч/кг Таким образом, химия высоких энергий направлена на экономию энергии. [c.235]

    Лигатур Ы.1Б металлургии черных и цветных металлов титан применяется в качестве раскислителя и деазотизатора, так как он энергично соединяется с кислородом и азотом, образуя соединения, уходящие в шлак.сЛля этой цели используют ферротитан (18—25% Т1), купротитан (5—12% Т1), алютит (40% А1, 22—50% Т1 и до 40% Си). Очистка от кислорода способствует образованию тонкой плотной структуры стали, обладающей повышенными механическими свойствами. Титан связывает и серу, вызывающую красноломкость стали, х/ При введении титана в качестве легирующей добавки в хромо-никелевые нержавеющие стали (до 0,8%) образуются включения карбидов титана, повышающие жаростойкость и уменьшающие склонность к межкристаллитной коррозии при сварке и термической обработке. У Присадка 0,05—0,15% титана к обычной углеродистой стали облагораживает ее и улучшает механические свойства. Введение титана в алюминиево-магниевые сплавы (до 0,6%) улучшает их механические свойства, повышает коррозийную стойкость и устойчивость к окислению при нагревании [II, 35]. [c.242]

    Алюминий доступен, дешев и легко рафинируется. Однако из термодинамических данных следует, что ниже 1400° он восстанавливает TIO2 только до TIO. Во-вторых, вследствие образования с титаном твердых растворов и интерметаллических соединений при восстановлении алюминием можно получить только сплавы, содержащие 12— 29% Ti и до 0,3% кислорода. Реакция восстановления (56) имеет большой тепловой эффект, поэтому процесс можно проводить методом внепечной металлургии  [c.269]

    Руды являются основным сырьем металлургии — отрасли промышленности, производящей металлы. Для извлечения металлов используют руды, содержащие металл в достаточном количестве в виде соединений, доступных для химических превращений. При этом учитывается также распространенность металла в природе. Так, титан извлекают из руд с массовой долей Т10г 6—30%- В производстве вольфрама применяют руды, которые содержат 0,14—0,5 % WO3. [c.190]

    Осн. методы получения Т.н.-азотирование Ti ок. 1200 °С (так проичводят наиб, чистый продукт) восстановление оксидов Ti углеродом или др. восстанови елями в присут. N2 ок. 2000 °С (так получают наиб, дешевый Т.н., к-рый, однако, содержит примеси внедрения-углерод, кислород). Т.н. получают также хим. осаждением из газовой фазы при восстановлении Ti l4 водородом в присут. N2 разложением металлоорг. соед., содержащих титан и азот. Используют Т.н. в виде изделий из компактного материала (получают методами порошковой металлургии) и покрытий. [c.593]

    Слитки Т.е. получают электродуговой плавкой электрода, состоящего из титановой губки (см. Титан) и легирующих элементов, в вакууме или аргоне затем их перерабатъхвают в деформир. полуфабрикаты. Небольшую часть деталей получают фасонным литьем или методами порошковой металлургии. Большинство Т.е. хорошо сваривается в вакууме или аргоне электродуговой и электроннолучевой сваркой, контактной и диффузионной сваркой, плохо обрабатывается резанием вследствие сильного налипания на инструмент. [c.594]

Рис. 19. Принципиальная технологическая схема процесса переработки комплексного титан-тантал-ннобие-вого сырья (Стефанюк С. Л., Коршунов Б. Г. Введение в хлорную металлургию редких элементов. М., Металлургия , 1970, сокращенный рис. 34). Рис. 19. <a href="/info/1480765">Принципиальная технологическая схема процесса</a> <a href="/info/66315">переработки комплексного</a> <a href="/info/444040">титан-тантал</a>-ннобие-вого сырья (Стефанюк С. Л., Коршунов Б. Г. Введение в <a href="/info/681857">хлорную металлургию</a> <a href="/info/2345">редких элементов</a>. М., Металлургия , 1970, сокращенный рис. 34).
    Помимо наиболее распространенных способов получения ПТА (гальванического нанесения слоя платины и наварки платиновой фольги на поверхность титанового анода), предложены другие разнообразные методы. ПТА можно подучать нанесением на титан платины диффузионной сваркой в вакууме, напылением расплавленного металла, конденсацией паров платины на титане, помещенном в вакуумной камере [1631, холодной прокаткой титана с листовой платиной с последующей термообработкой в инертной атмосфере или вакууме при 600—1000 °С [164J, покрытием титана платиной или металлами - платиновой группы методом взрыва [165[, методами порошковой металлургии, при получении металлокерамических электродов, в состав которых входят металлы платииовой группы [166), или нанесением их на поверхность в виде тонкого слоя [167]. Применяют нанесение солей платиновых металлов на титан в виде растворов их солей или пасты с последующим термическим разложением их [16Я] и образованием активного слоя, содержащего платиновые металлы, их окислы или смешанные окислы платиновых металлов с окислами неблагородных металлов. Окисные слои платиповых. металлов могут быть получены па поверхности электрода нанесениел гальваническим или каким-либо другим способом тонкого слоя платинового металла или его сплава с последующим его окислением. [c.175]

    Разработаны и находят применение для электролиза сернокислотных электролитов в цветной металлургии аноды с активным слоем из MnOj, нанесенной на титан термическим разложением азотнокислого марганца [90—93] или электролитическим способом из кислых растворов азотнокислого марганца [94—96]. [c.228]


Библиография для Титан металлургия: [c.314]    [c.143]    [c.203]   
Смотреть страницы где упоминается термин Титан металлургия: [c.463]    [c.295]    [c.647]    [c.453]    [c.592]   
Химия (2001) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Металлургия



© 2025 chem21.info Реклама на сайте