Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Продольное насадочных колоннах

    ПРОДОЛЬНОЕ ПЕРЕМЕШИВАНИЕ В НАСАДОЧНЫХ КОЛОННАХ [c.181]

    Продольное перемешивание в насадочных колоннах изучали многие исследователи [101—103, 156, 171 — 186]. Условия и результаты некоторых работ представлены в табл. 9. [c.181]

    Условия и результаты исследования продольного перемешивания в насадочных колоннах [c.182]

    При исследовании [17] насадочной колонны диаметром 38 мм, длиной от 152 до 915 мм, заполненной различными насадками (шары, кольца Рашига и др.), кривые отклика на импульсный ввод трассера в поток воды регистрировали в двух сечениях. С увеличением критерия Рейнольдса от 0,1 до 1000 наблюдалось возрастание Еп от 0,2 до 10 см с и Ре—от 0,1 до 1,3. При Ке = 0,1—100 величина Еп линейно зависит от Ре, а при Не = 100—400 показатель степени у Ке падает от 1 до 0,25, после чего наблюдается излом кривой. Авторы объясняют это переходом от ламинарного режима течения к турбулентному. Заметим, что при Ке=1—400 числа Пекле весьма близки для всех испытанных типов насадок (Ре 0,8). С увеличением размера элемента насадки продольное перемешивание несколько возрастает (Ре падает). [c.184]


    В результате исследования продольного перемешивания в насадочной колонне при встречном движении двух фаз установлено [181], что коэффициент продольного перемешивания в сплошной фазе уменьшается с увеличением скорости оплошной фазы и уменьшением скорости дисперсной фазы. Такой характер изменения Еп.с связан с уменьшением поперечной неравномерности в потоке сплошной фазы при его турбулизации, вызванной увеличением скорости. При дальнейшем увеличении скорости сплошной фазы рост турбулентных пульсаций приводит к возрастанию Еп.с-К этому же приводит увеличение скорости дисперсной фазы. [c.185]

    Число Пекле для оценки продольного перемешивания жидкости в насадочной колонне при встречном потоке газа (Ре ) рекомендуют [179] определять по уравнению [c.186]

    При исследовании процесса абсорбции СОг в промышленной насадочной колонне обнаружено [180] значительное продольное перемещение газа. В насадочной колонне диаметром 250 мм изучали [177] продольное перемешивание при встречном движении воды и воздуха. Удельные расходы воды варьировали в пределах Ыв=5—20 мЗ/(м -ч), воздуха —в пределах возд= = 0—1,2 м /(м -с). Трассером служил 5%-ный раствор H I. [c.186]

    В пульсационных насадочных колоннах, где турбулентность, обусловлена не только движением жидкостей, но и их пульсацией, продольное перемешивание интенсифицируется. Влияние формы элементов насадки и способа ее укладки на продольное перемешивание изучали в работе [156]. Полученные данные, за исключением области высоких чисел Рейнольдса, не уклады- [c.187]

    О влиянии продольного перемешивания на разделяющую способность массообменных колонн можно судить по следующему примеру [230]. Для извлечения 95% бензола из газовой фазы абсорбцией легким маслом в насадочной колонне диаметром 0,5 м при противотоке фаз требуется колонна высотой 8,5 м. При наличии продольного перемешивания в газовой и жидкой фазах, характеризуемого значениями Реж = 3,6 и Рбу = 25, та же степень извлечения может быть достигнута в аппарате высотой 25 м. [c.222]

    Коэффициенты продольного перемешивания. Найдем коэффициенты продольного перемешивания для насадочной колонны с помощью следующих эмпирических уравнений [13, 14]  [c.54]

    Количественные гидродинамические характеристики насадочных колонн ниже точки инверсии. К важнейшим параметрам гидродинамической структуры потоков в насадке ниже точки инверсии относятся перепад давления в насадке, отношение скорости газа (пара) к скорости в инверсионной точке, длительность пребывания потоков в аппарате, доля эффективно используемого объема системы, степень продольного перемешивания в колонне, характер и интенсивность обменных процессов в жидкой, газообразной (паровой) фазах и т. п. [c.394]


    Отмеченные свойства системы масло-фенол, а также высокая степень дисперсности сырья в экстрактной фазе приводят в насадочных колоннах к сильно развитому продольному перемешиванию дисперсной и сплошной фаз, снижающему как эффективность колонны в целом, так и предельно достижимые удельные нагрузки. [c.24]

    XI-31). Найденные теоретические передаточные функции трансформировались в амплитудно-частотные и фазо-частотные характеристики и сравнивались с частотными характеристиками, полученными экспериментально при абсорбции СО-2 водой в насадочной колонне при этом концентрация СО в поступающем газе изменялась синусоидально, а частоты—от 0,0017 до 0,25 гц. Экспериментальные фазо-частотные характеристики удовлетворительно совпадали с теоретическими во всем диапазоне частот, причем характеристики для всех моделей мало отличались друг от друга. Это объясняется тем, что фазо-частотные характеристики определяются в основном временем пребывания газа в колонне и мало зависят от продольного перемещивания. Экспериментальные амплитудно-частотные характеристики для всех моделей удовлетворительно совпали с теоретическими только при частотах ниже 0,017 гц. При дальнейшем повышении частоты расхождения между экспериментальными и теоретическими характеристиками резко возрастают, что указывает на неточность теоретических моделей. [c.701]

    Продольное перемешивание является одним из основных факторов, определяюш их статические и динамические свойства насадочных колонн, причем степень этого влияния зависит от гидродинамической обстановки в аппарате. При построении математических моделей насадочных колонн как объектов с распределенными параметрами с учетом продольного перемешивания возможны два подхода описание процесса на основе дифференциальных уравнений в частных производных второго порядка — диффузионная модель, либо приближенное представление непрерывного процесса многоступенчатым с сосредоточенными параметрами в каждой ступени — ячеечная модель. [c.244]

    Обзоры работ по продольному перемешиванию в насадочных -.колоннах сделали Бишоф и Левеншпиль [7], а также Перкинс и Джонстон [37]. [c.129]

    Известны многочисленные исследования продольного перемешивания в насадочной колонне с единственной фазой [38—56], но, к сожалению, полученные результаты зачастую были противоречивы. [c.129]

    Явление продольного перемешивания в насадочных колоннах можно рассматривать как комбинацию следующих процессов  [c.133]

    Эксперименты с однофазными потоками (вода и водные растворы глицерина) подтвердили, что пульсации увеличивают продольное перемешивание в колонне. В пульсационных насадочных колоннах продольное перемешивание появляется в результате турбулентности, как возникающей из-за течения жидкости через насадку, так и вызванной пульсациями. [c.136]

    Недостаточен теоретический уровень раздела, посвященного продольному перемешиванию в насадочных колоннах. Автор ограничивается указанием на большой разброс данных. Причина этого установлена в работах советских ученых и объясняется наличием застойных зон [131—133]. Как показало теоретическое исследование процессов перемешивания в зернистой среде [132], застойные зоны могут на порядок и более увеличивать коэффициент продольного перемешивания. В этом случае применение концентрационных импульсных возмущений не дает правильных сведений о структуре потоков. Рекомендуется использовать гидродинамические возмущения [131, 133, 134], впервые описанные в работе [135]. Однако при интенсивном движении жидкости в аппарате, в частности при пульсациях, когда наличие застойных зон исключено, продольное [c.165]

    Для снижения влияния продольного перемешивания снижают интенсивность циркуляционного течения сплошной фазы, размещая в корпусе колонны насыпные слои насадки, аналогичной той, которая используется в процессах абсорбции и ректификации. Насадка способствует также повторному диспергированию наиболее крупных капель. Эти меры повышают эффективность аппарата, поэтому насадочные колонны позволяют достичь нескольких теоретических ступеней разделения. [c.37]

    При анализе стационарных режимов работы насадочных колонн в основном исследуется влияние продольного перемешивания на разделительную способность насадочной аппаратуры. Анализ исследований гидродинамики однофазных потоков показывает, что козффициент продольного перемешивания в газовых потоках ниже, чем в жидкостных и, кроме того, продольное перемешивание в жидкой фазе тем больше, чем меньше линейная скорость жидкости. [c.264]

    Описание нестационарной абсорбции в насадочной колонне. Рассмотренные ранее модели процесса абсорбции относились к стационарному случаю. В нестационарных условиях особую важность приобретает учет распределенности в пространстве и во времени основных гидродинамических параметров процесса удерживающей способности, расхода жидкости в колонне, перепада давления. Многочисленными экспериментальными исследованиями было показано существование продольного перемешивания и застойных областей в насадочных абсорберах. В связи с этим модель абсорбера должна также отражать неравномерность распределения элементов потока в аппарате по времени пребывания и наличие взаимного обмена между газовой фазой, проточной зоной потока жидкости и застойной зоной потока жидкости с количественным выражением интенсивности обменных процессов. [c.292]


    В работе [22] степень продольной дисперсии в проточной части насадочной колонны предлагается находить на основе прямых замеров динамической удерживающей способности насадки. [c.145]

    Рассмотрим теперь некоторые расчетные уравнения для определения параметров математических моделей гидродинамических структур потоков в насадочных колоннах. Отметим, что для двухфазных газожидкостных течений в слое насадки с увеличением скорости газа коэффициент продольного перемешивания жидкости сначала увеличивается, а затем при резком возрастании газосодержания в слое уменьшается [23, 48]. [c.154]

    В результате изучения продольного перемешивания потоков в насадочной колонне диаметром 100 мм с кольцами Рашига и седлами Берля размером 12,7 мм в работе [52] получены следующие зависимости  [c.154]

    Степень продольного перемешивания жидкости в противотоке с газом в насадочных колоннах с кольцами Рашига диаметром от 10 до 20 мм можно определить по уравнению [55]  [c.155]

    Влияние каждого из трех перечисленных факторов на интенсивность продольного перемешивания не одинаково в колоннах различных конструкций из-за своеобразного характера формирующихся в них потоков. Так, турбулентное перемешивание в осевом ваправлении и осевая циркуляция в потоке преобладают в колоннах, в которых физические или химические процессы интенсифицируются путем сообщения взаимодействующим потокам внешней механической энергии (аппараты с механическим перемешиванием), а также в барботажных колоннах. Влияние же поперечной неравномерности преимущественно проявляется в аппаратах без механических перемешивающих устройств (распылительные колонны, насадочные колонны без пульсаций и т. п.) или в аппаратах с очень низкой интенсивностью перемешивания. Поперечная неравномерность (особенно в газовом потоке) может оказывать некоторое влияние на продольное перемешивание фаз также в барботажных колоннах. [c.24]

    Насадочные колонны, наполненные кольцами Рашига и Паля седлами Берля и подобными элементами, благодаря простоте устройства, большой удельной поверхности и порозности рабочего объема применяются в химической технологии для осушест-вления разнообразных тепло-, массообменных и химических (процессов. Эффективность этих аппаратов существенно зависит от равномерности распределения по сечению взаимодействующих потоков и их гидродинамической структуры. Этим обусловлено значительное число исследований, посвященных изучению продольного перемешивания потоков в рассматриваемых колоннах. [c.181]

    При исследовании [173] продольного перемешивания в потоках воды и воздуха при их встречном движении в насадочной колонне диаметром 100 мм со слоем насадки высотой 3,6 м. (седла Берля и кольца Рашига размером 12,7 мм) трассером для воздуха служил "Аг, а для воды— 1 (в виде раствора иодида натрия). Долю объема колонны, занимаемую жидкой фазой, определяли по ее задержке Н1а1садкой. Принимая, что Ре зависит от тех же параметров, что и задержка жидкости, для определ ания коэффициента про.долыного перемешивания в жидкой фазе предложили уравнение вида  [c.185]

    В насадочной колонне диаметром 150 мм, заполненной кольцами Рашига размером 15X15 мм, были определены [184] коэффициенты продольного перемешивания для сплошной фазы при встречном движении двух фаз (вода — керосин). Установлено, что Еп.с = —4 см с, причем в зависимости от удерживаюшей способности (УС) по дисперсной фазе величина Еп.с сначала падает, а затем возрастает с ростом УС. [c.190]

    IX-1-6. Продольное перемешивание. Как отмечалось в разделе VI П-1, при расчетах противоточной абсорбции в насадочных колоннах обычно принимают, что и газ, и жидкость движутся поршневым потоком , в котором элементы жидкости, входящие в колонну в одно и то же время, движутся через аппарат, не опережая и не отставая друг от друга, и выходят из него также одновременно. Известно, что такое допущение об идеальном вытеснении не совсем точно отражает реальную картину и что на самом деле происходит некоторое перемешивание, или обмен местами между элементами потока, входящими в колонну не одновременно. Измерения степени перемешивания жидкости и газа проводились, например, Де Мариа и Уайтом Сэтером и Левеншпилем и Де Ваалем и Мэмереном [c.219]

    Прн построенни математических моделей насадочных колонн как объектов с распределенными параметрами с учетом продольного перемешивания также возможны два подхода описание процесса на основе дифференциальных уравнений с частными производными второго порядка — диффузионная модель или приближенное представление непрерывного процесса многоступенчатым с сосредоточенными параметрами в каждой ступени —ячеечная модель. [c.417]

    На рис. 4.10 изображена экспериментальная весовая функция насадочной колонны высотой 2.0 м и диаметром 0.15 м. Размер насадки 10X10. Параметры технологического режима плотность орошения =6725 кг/м час, нагрузка по газу 6=2038 кг/м час, линейная скорость орошения и=0,4Х Х10" м/сек, коэффициент продольного перемешивания >=3,36м /сек. По этой экспериментальной кривой была выполнена идентификация моделей № 4 и № 10. Графики весовых фзгнкций этих моделей показаны на рис. 4.10, там же изображены соответствующие им -функции. [c.259]

    Как следует из материала рассмотренной главы, применение указанной методики позволило решить ряд важных практических задач в области расчета процессов, протекающих в химико-технологической аппаратуре. Так, развит прямой метод исследования гидродинамической структуры потоков в аппаратах на основе специфических свойств неустаповивпшхся течений жидкостей и газов в насадке и пористой среде установлен характерный для насадочных колонн гидродинамический эффект, проявляющийся в наличии экстремальной зависимости статической удерживающей способности от нагрузок по фазам на аппарат созданы методики и получены расчетные формулы для определения важнейпшх гидродинамических параметров структур потоков — коэффициентов продольного перемешивания, относительных объемов проточных и застойных зон, коэффициентов обмена между проточными и застойными зонами. Результаты исследования гидродинамической структуры потоков в насадке положены в основу анализа динамики процесса абсорбции в насадочных колоннах, оценки управляемости по каналам гидродинамики и массообмена и синтеза оптимального управления этими аппаратами. [c.433]

    В настоящее время нет полных сведений о распределении времени пребывания в системах с контактом двух жидких фаз, В насадочных колоннах с движущимся вверх газо-жидкостным нотоком величи-чины Рбр по имеющимся данным, колеблются от 100 до 5% соответствующей величины для однофазного потока При противотоке жидкости и газа через кольца Рашига и двух несмешивающихся жидкостей в колонне с насадкой Ре, для жидкой фазы близко к 0,1. При потоке жидкостей сверху вниз через насадочный материал перемешивание уменьшается. По данным Крамерса и Алберды для слоя высотой 0,7 м из колец Рашига размером 10 мм значение ЛГ лежит между 10 и 20. Продольное перемешивание возрастает с уменьшением жидкостной загрузки и слабо зависит от скорости газа. [c.112]

    Кафаров, Дорохов и Шестопалов [61 подробно исследовали взаимосвязь между нагрузками колонны по обеим фазам и различными гидродинамическими параметрами, например динамической или статической удерживающей способностью колонны (см. разд. 4.10.5), продольным перемешиванием и перепадом давления (разд. 4.11). Они установили количественную связь между динамической удерживающей способностью и перепадом давления, а также зависимость статической удерживающей способности от нагрузки, изменявшейся в широком интервале. С использованием понятий эффективного и мертвого объема была выведена теоретическая модель нестационарного движения жидкости в насыпной насадке модель была использована для предварительного расчета параметров движения жидкости. Исследована также зависимость коэффициента продольного перемешивания от нагрузок по газу и жидкости, а также от физикохимических свойств жидкости. Ионас [7] проанализировал основные факторы, приводящие к продольному перемешиванию в насадочных колоннах. В своих экспериментах Тимофеев и Аэров ([65] к гл. 7) основное внимание уделили вопросам влияния диаметра колонны на эффективность разделения. [c.46]

    С целью установления соответствующих зависимостей рассмотрим работу насадочной колонны с нижним питающим кубом (см. рис. 11) полученные соотношения в целом будут справедливы и для колонн других конструкций, кратко охарактеризованных выше. Пусть в начале работы колонны в ее кубе. находится Мо молей загрузки, в которой молярная доля вышекипящей примеси составляет хо. Для равномерного смачивания иасадки жидкостью колонна вначале обычно подвергается захлебыванию , после чего в ней устанавливается необходимый тепловой режим, чтобы скорости потоков ж1идкой и паровой фаз по колонне были постоянными. Избыток жидкости из ректифицирующей части при этом стекает в куб насадкой захватывается (задерживается) лишь некоторое определенное количество жидкости. Величина Ж1идкостного захвата (задержки) зависит в основном от типа и поверхности насадки, а также от скорости потоков жидкости и пара в колонне. Затем в течение некоторого времени (пусковой период) колонна работает в безотборном режиме (режим полного орошения) до достижения в ней стациона(рного состояния и лишь после этого включается система отбора части дистиллята. Время пускового периода может быть определено расчетным путем. Однако такая оценка является весьма приближенной и поэтому время пускового периода определяется экспериментально. Как показали результаты соответствующих исследований, время пускового периода можно несколько снизить, если с самого начала процесса колонна будет работать в отборном режиме. Разумеется, отбираемый при этом дистиллят по своему составу не будет отвечать составу требуемого продукта вплоть до выхода колонны к заданному стационарному состоянию, и его целесообразно во избежание потерь исходного вещества отводить в питающий куб. В результате будем иметь случай стабилизированной ректификации, для которой справедливы закономерности, характеризующие непрерывную ректификацию. Действительно, поскольку при циркуляции жидкость — пар количество вещества в колонне не изменяется, по достижении стационарного состояния будет постоянным и состав питания — образующегося в кубе колонны пара. Совершенно очевидно, что пренебрегая, как и выше, эффектом продольного перемешивания, уравнение рабочей линии колонны, работающей в стационарном состоянии, для рассматриваемого случая можно записать в виде [c.84]

    Продольное перемешивание в насадочных колоннах. Отаке с сотр. [1201 предложили безразмерное уравнение для определения коэффициента продольного перемешивания в жидкой фазе [c.436]

    Насадочные колонны, как уже отмечалось, эффективнее распылительных благодаря меньшему продольному перемешиванию и более интенсивному редиспергированию капель. Они обладают, однако, меньшей производительностью, так как значительная часть их поперечного сечения занята насадкой (кольца, седла и т. п.). Во избежание растекания капель при контакте с поверхностью насадки материал последней должен предпочтительно смачиваться сплошной фазой. Размер элемента насадки, как и в других насадочных колоннах, не должен превышать 1/8 их диаметра с целью уменьшения объема пристенного пространства и канало-образования. Одновременно следует учесть, что в экстракционных насадочных колоннах средний размер образующихся капель i/yp (следовательно, и удельная поверхность дисперсной фазы) зависит от размера элемента насадки /. При этом для каждой жидкостной системы существует критический размер элемента насадки / р, определяемый по формуле / р = 2,42 (a/g Ар) - м. [c.594]

    Вермюлен с сотр. [47] исследовал продольную дисперсию в противоточном двухфазцом потоке насадочной колонны. Числа Пекле определяли как для сплошной, так и для дисперсной фазы в системах керосин в воде, вода в керосине, вода в минеральном масле и диизо-бутилкетон в воде. Наиболее важные измерения проведены на воде. Числа Пекле для обеих фаз изменялись с изменением чисел Рейнольдса для каждой фазы. Для сплошной фазы числа Пекле возрастали с увеличением скорости потока этой фазы и уменьшением потока дисперсной фазы. [c.133]

    Многочисленные исследователи определяли увеличение скорости массопередачи в результате пульсаций. Они установили, что эффективность увеличивается более чем в три раза но сравнению с обычной насадочной колонной. Однако пульсации одновременно усиливали продольную дисперсию в колонне из-за возникающих дополнительных эффектов вынужденного обратного перемешивания. Такйм образом, пульсации приносят пользу только тогда, когда эффект от увеличения межфазной поверхности превалирует над отрицательными эффектами продольного перемешивания. [c.136]

    Тэйлор и Леонард [62] изучали возрастание дисперсии в результате пульсаций потока единственной фазы в открытых трубках, однако основные исследования продольного перемешивання в пульсационных насадочных колоннах были проведены Вермюленом и др. [45-49]. [c.136]

    Как и в случае обычных насадочных колонн, были получены экспериментальные профили концентраций для систем вода — кротоновая кислота — изодекан и вода — уксусная кислота — диизобутилкетон. Они сравнивались с рассчитанными по эксперименталь- ным данным о продольнол перемешивании. Получено хорошее согласие с моделью двухфазной одномерной диффузии, что подтверждало адекватность представления о поведении жидкости в насадочных колоннах с ее реальным поведением и возможность использования данных о продольном перемешивании для расчета процессов. [c.138]

    С точки зрения математического описания процессов ректификации в насадочных колоннах наибольший интерес представляют данные по продольному перемешиванию в двухфазных потоках и особенно в парожид-264 [c.264]

    На основе обработки и анализа экспериментальных данных по изучению процесса абсорбции СО2 в промышленной колонне в работе [51] указано на наличие значительного продольного перемешивания газа в насадочных колоннах при противоточном движении его с жидкостью. Следовательно, в отличие от барботажнон или дисперсной системы газ — жидкость, в насадочных колоннах необходимо учитывать одновременно влияние продольного перемешивания газа и жидкости на эффективность массопередачи. [c.154]

    Для расчета и анализа работы насадочных колонн в соответствии с диффузионной моделью требуются данные по продольному перемешиванию (см. гл. И). Коэффициент продольного перемешивания п его завпсидшсть от различных факторов (размеров, аппарата, скорости потока, физических свойств среды и т. д.) устанавливаются опытным путем с помощью анализа импульсных кривых [48—50]. [c.89]


Смотреть страницы где упоминается термин Продольное насадочных колоннах: [c.183]    [c.128]   
Последние достижения в области жидкостной экстракции (1974) -- [ c.129 , c.133 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Колонна насадочные



© 2025 chem21.info Реклама на сайте