Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния никеле и его сплавах

    Разработаны методы определения магния в золах растений [15, 214], в почвах [16], в биологических жидкостях [18, 19, 20, 152, 244] шлаках и цементах [82], в сплавах на основе алюминия [6, 36, 127, 198], в железе [149], в металлическом уране [245], в никеле и сплавах на его основе [156], в рудах [175], в железных рудах, жаропрочных соединениях, цементах, чугуне, сахарах [175], в препаратах редкоземельных элементов [ 200] в чугуне [247] методы определения кальция в растительных материалах [86], в почвах [16], в биологических жидкостях [20, 79, 157, 175, 215], в рудах, сахарах [175] методы определения стронция [11, 175, 184, 242]. [c.124]


    Определение магния в никеле и сплавах на основе никеля [156] [c.128]

    Осаждение гидроокиси магния избытком едкого натра в присутствии алюминия, олова, цинка и других амфотерных металлов более пригодно для повышения концентрации магния в растворе, чем для отделения его от этих металлов, поскольку они соосаждаются вместе с гидроокисью магния. Метод отделения магния от таких металлов, как железо, марганец, медь, цинк, свинец и никель, основан на осаждении гидроокиси магния едким натром в присутствии тартрата или цианида, которые предотвращают осаждение указанных металлов . Этот метод выделения магния был применен для определения его в сплавах алюминия. Для отделения магния от больших количеств титана применяют осаждение магния в виде гидроокиси из растворов, содержащих перекись водорода . [c.528]

    И. М. Кольтгоф, Д. Д. Лингейн. Полярография. Госхимиздат, 1948, (508 стр.). Книга содержит достаточную полную сводку теоретических и практических исследований в области полярографии. Приведена характеристика полярографического определения более чем 60 неорганических ионов и соединений и описаны методики анализа технических материалов сплавов меди, никеля, цинка, магния, свинца, сталей, руд и т. д. Отдельные главы содержат сведения по полярографическому определению органических соединений. В заключение описывается методика полярографирования с твердыми электродами, н способ амперометрического титрования. [c.488]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Коррозионной усталости в определенных условиях подвержены практически все конструкционные сплавы на основе железа, алюминия, магния, меди, никеля, титана и других металлов. Интенсивность влияния коррозионной среды на сопротивление усталости определяется ее агрессивностью, структурным состоянием металла, его дефектностью, состоянием поверхности изделий, их геометрией и условиями нагружения. Наиболее полно изучена коррозионная усталость углеродистых и легированных сталей и значительно меньше — сплавов титана, алюминия и других металлов. [c.49]


    Разработаны методы определения кобальта в металлических никеле [88, 109, 584, 775, 957, 1002, 1082, 1188, 1200, 1417, 1518], натрии [1321, 1458], меди [686], магнии [343, 830], алюминии [1395], цирконии и титане [343, 927, 1071, 1081, 1445, 1499], свинце [186], висмуте [233], уране [1387], стеллите [73], победите [357], в сплавах кобальт — платина [1488], хром — кобальт [96], вольфрам— кобальт [520], в карбидах вольфрама и титана [1208] и других объектах [227]. [c.198]

    Радиоактивационный метод применяют для определения фосфора в горных породах и минералах [569, 760, 1109], в сталях и сплавах 542, 555, 738], в металлах — алюминии, железе, магнии, селене, теллуре, сурьме, никеле, кальции, литии, натрии, боре, меди и др. [310, 427, 466, 470, 471, 490, 503, 665, 698, 706, 707], в кремнии [134, 812, 836], в карбиде кремния [532, 1080], в окиси бериллия [252] и мышьяке [982]. [c.81]

    Сплавы цинко-алюминиевые. Спектральный метод анализа Магний первичный. Спектральный метод определения натрия и калия Магний первичный. Спектральный метод определения кремния, железа, никеля, алюминия, меди, марганца и титана [c.821]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    Опубликован ряд работ по полярографическому определению никеля в уране [783, 1099], золоте [1043], кремнии [1042], цирконии [427, 1215] и его сплавах [385, 427], а также в легких сплавах на основе алюминия [640], в магнии [219], в электролитических ваннах [579], сточных водах [1052] и других промышленных отходах. [c.135]

    Экстракция оксината была использована для выделения алюминия и (или) определения его в железе [831], металлическом никеле [1143], тории [616], окиси тория [333], окиси вольфрама [327], в свинце, сурьме, олове и их сплавах 832), магнии высокой чистоты [701, 1637], кальции [958], хроме высокой чистоты [497], уране [40, 1297, 1525], редкоземельных элементах [1064], щелочных элементах [504, 1523], в кислотах высокой чистоты и в двуокиси кремния [820], в сталях [49, 189, 479, 485, 643, 1119, 1262], жаропрочных сплавах [1157], сплавах, не содержащих железа [520], морской воде [680, 681], промышленных водах [352), силикатных и карбонатных материалах [829, 1094), полиэтилене [129], стекле [189], монацитах [1250], в различных металлах с использованием активационного анализа [1364] и ряде других объектов [1440, 1523]. [c.126]

    Вначале определяют основной элемент сплава — алюминий. Для этого берут два электрода из чистого алюминия (или один угольный, один из алюминия), включают ток и просматривают спектр на стилоскопе. Заметив интенсивные полосы спектра в области 5400—4400 А, ставят индикаторную стрелку прибора на самый интенсивный кант полосы 4842 А. Затем алюминиевые электроды заменяют на угольный электрод и испытуемый сплав. Если в спектре наблюдаются интенсивные полосы А10 (почти такой же интенсивности, как в чистом алюминии), то основа сплава — алюминий. После этого в спектре сплава определяют наличие меди по линиям 5782, 5292, 5218, 5153, 5105 А магния — по линиям 5183 5172, 5167 А марганца — по линиям 4823, 4768 А никеля — по линиям 5035, 5017, 4980, 4984 А кремния — по линии 3905 А. Определение кремния следует вести в искровом режиме. [c.172]

    Для марганца, кремния, никеля и меди дано описание рекомендуемых методов, так как ход анализа для определения этих элементов в первичном магнии несколько отличается от хода анализа, рекомендованного ниже для сплавов. [c.179]

    Для определения никеля рекомендуется экстракционно-фотометрический метод при 0,001% Ni и более можно определять фотометрическим методом с диметилглиоксимом в щелочной среде, как в магниевых сплавах (см. стр. 223), но учитывая, что в магнии содержится очень мало марганца, для выделения его в виде перекиси марганца следует прибавлять только 1 мл раствора персульфата аммония (см. стр. 224). [c.179]

    При определении магния в сплавах никеля с помощью низкотемпературных пламен Эндрью и Никольс [25] выяснили, что присутствие 0,5 мкг/мл А и 0,2 мкг/мл 81 уменьшало абсорбцию магния более чем на 50%. Наличие 500 мкг/мл никеля позволяло контролировать влияние 1 мкг/мл А1 или 81 на абсорбцию магния. [c.99]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]


    Т. R. Andrew, Р. N. R,. Ni hols, Analyst, 87, 25 (1962). Применение метода атомной абсорбции для быстрого определения магния в никеле и никелевых сплавах, используемы.х в электронной промышленности. [c.210]

    Совсем недавно Дункельманом [13] были исследованы катоды из никеля, сплава серебра и магния, тантала, окисленного никеля. Было установлено, что все они нечувствительны к солнечной радиации, проникающей через земную атмосферу, но обнаруживают некоторую чувствительность для области длин волн ниже 2800 А. Чувствительность увеличивается по мере уменьшения длины волны вплоть до 2000 А, где она уже ограничивается пропускаемостью окружающей трубку атмосферы. Ожидалось, что наибольший эффект будет наблюдаться для более коротких волн Гинтереггер и Ватанабэ [26] показали, что для вакуумного ультрафиолета фотоэлектрический выход платины, никеля и вольфрама быстро возрастает в области от 1400 до 1216 А. Для обнаружения и определения паров воды по поглощению волны 1216 Ь (а) Гартон, Уэбб, и Уилди [17] использовали фотоумножитель с вольфрамовым катодом и окном из фтористого лития. [c.83]

    Экстракция при помощи оксина была использована для определения магния в кальциевых минералах, aлюJMИниeвыx [345] и циркониевых сплавах [1070] (мешающие элементы удаляли предварительной экстракцией при более низких значениях pH и (или) маскировали цианидами), в электролитическом никеле [584, 587], уране [47], биологических образцах (в присутствии цианидов и тартратов как маскирующих агентов) [1615] и других материалах [1366], а также для отделения магния от щелочных металлов [1595]. [c.131]

    Было найдено, что при 400—900° количественно реагируют с однохпористой серой окислы меди, железа, алюминия, магния, сернокислый барий [6], окислы циркония, бора [7], циркония, хрома и титана Выполнялись определения кислорода в сплавах никеля с вольфрамом и молибденом, в стали и металлических хроме и алюминии при содержании кислорода [c.155]

    Определению магния с феназо мешают железо, алюминий, медь, цинк, никель, марганец, титан. Присутствие растворимых карбонатов и силикатов оказывает незначительное влияние, что позволяет определить магний в карбонатсодержащих природных водах, а также применять реактив при анализе многих сплавов, требующих для своего растворения едкий натр, которой может содержать примеси карбонатов или силикатов. [c.35]

    Фотометрический метод с применением эриохром черного Т используют для определения магния в алюминии и его сп.чавах [2, 42], цинке и его сплавах [43], никеле [43, 44], уране [45], индин ]46], солях никеля, цинка н марганца [3]. [c.227]

    Определению титана при помощи диантипирнлметана не мешают ионы магния, алюминия, цинка, кадми , марганца, меди, циркония, редкоземельных элементов, молибдена, ниобия и тантала, поэтому метод можно применять для определения титана в легких, черных и цветных сплавах. Ионы никеля, хрома и кобальта не реагируют с диантипирилметаном, но мешает собственная окраска ионов поэтому раствор сравнения должен содержать все компоненты, кроме диантипирилме-тана. Ионы железа (III) и ванадия (V) предварительно восстанавливают гидроксиламином. [c.374]

    Известен метод определения примесей в плутонии, основанный на его поглощении из ЪМ HNOg. Такие элементы, как алюминий, кальций, хром, железо, магний, марганец, никель и цинк, проходят в вытекающий раствор и определяются спектрографическим способом [56]. Опасность облучения персонала при использовании этого метода минимальна. Он применяется также для анализа тройных сплавов плутония с кобальтом и церием [93] (см. также [5, 12, 13, 127]). [c.339]

    Флашка [663] рекомендует после растворения осадка диметилдиоксимата никеля в НС прибавить избыток раствора комплексона П1 и после подщелачивания аммиаком оттитровывают этот избыток раствором сулы )ата магния в присутствии эриохромчерного Т. Этот метод пригоден для определения никеля в сплаве Сг—Ni— Fe [1059]. При определении никеля в ферритах после растворения объекта в смеси НС1 и HNO3 экстрагируют железо (И ) эфиром, а к аликвотной части добавляют избыток комплексона 1П, доводят pH раствора до 5—6, добавляют смесь гексаметилентетрамина и метилтимолового синего и оттитровывают избыток компле сона HI 0,05 М раствором нитрата свинца [1058]. В о учае определения никеля в сплавах Fe- o—Си железо маскируют триэтанолами-ном, медь — тиогликолевой кислотой [1060]. В одной порции раствора можно оттитровать вместе кобальт и никель. В другой порции кобальт при добавлении HgOg и K N переводят в устойчивое комплексное соединение и титруют один никель. [c.146]

    Для определения никеля в сплавах на основе магния и алюминия используют главным образом фотометрические методы. Многие авторы применяют диметилдиоксим в присутствии окислителей в щелочной среде [491, 572, 1130], а-фурилдиоксим, экстрагируя его соединение с никелем и затем измеряя оптическую плотность [697, 698]. Иногда экстрагируют соединение никеля 5%-ным раствором пирролидиндитиокарбамината в хлороформе и измеряют оптическую плотность экстракта [710]. В кальции определяют никель в виде суспензии с ниоксимом [650]. Никель выделяют диметилдиоксимом, используя для комплексообразования кальция [c.148]

    Литература. Определение железа в металлических алюминии, магнии, меди, цинке, никеле и в сплавах Н. S р е ск е г, W. Doll, Z. ana . hem., 152, 178 (1956). [c.763]

    Распознование типа сплава. Обнаружение в сплавах тех или иных химических элементов проводят преимущественно дробным методом при помощи микрокристаллоскопических и капельных реакций. Однако прежде всего желательно установить тип сплава. Распознавание типа сплава, как правило, не требует предварительного его измельчения и ведется на деталях бесстружковый методом анализа. Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др., медные сплавы — олово, цинк, свинец, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.384]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Метод основан на том, что цинк в аммиачном растворе вступает во взаимодействие с трилоном Б, образуя устойчивый комплекс. При растворении навески сплава в щелочи медь, железо, магний, марганец, никель и некоторые другие компоненты сплавов остаются в нерастворившемся в щелочи остатке и определению цинка не мешают. [c.104]

    S-5 [512], MAH-l-S-3,6 [295], МАН-2 [501], MAH-2-S-6 [168, 293], МАОХ [434], П-2-ХАТ [307]. Для фотометрического определения никеля применяют КТРАДЭАФ [535], KTPOAH-l-S-3,6 [536], ТЕТРА [481], о-ПАТ [126, 307, 381], ПАР [102, 503, 763, 769, 915], ПАН-2 [96, 175, 304,316, 318, 336, 498, 591, 592, 792], МААК [267], МАН-1 [13, 501], MAH-l-S-3,6 [295], МАОХ [434]. Эти реагенты применяют для определения никеля в силикатных породах [267, 381], руде [501], минеральной [763] и природной [501] водах, нефти [915], сталях [13,267, 307,381,481, 769], сплавах Си—Ni—Pd [102], ферритах [96], вольфраме [503], кобальте [175], карбонатах кальция и магния [675], сульфиде и селениде кадмия [304, 336], тонких пленках [591]. [c.148]


Смотреть страницы где упоминается термин Определение магния никеле и его сплавах: [c.542]    [c.40]    [c.189]    [c.179]    [c.204]    [c.148]    [c.273]    [c.690]    [c.66]    [c.293]    [c.374]    [c.194]   
Аналитическая химия магния (1973) -- [ c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Магний сплавы

Никель определение

Сплавы никеля

Сплавы никеля Jt И h I Сплав



© 2025 chem21.info Реклама на сайте