Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальция перхлорат анализ

    Ни один из безводных перхлоратов щелочноземельных металлов не имеет четко выраженной температуры плавления. При термическом анализе перхлоратов магния и кальция кривые температур характеризуются температурными остановками, которые могут быть приняты за температуры плавления или разложения гидратов. Калориметрическими определениями установлено, что перхлорат кальция аналогично перхлоратам щелочных металлов разлагается с образованием хлористого кальция. При разложении гексагидрата перхлората магния наблюдается заметная потеря в весе без резкого излома кривой температура—вес продуктом распада является окись магния. [c.46]


    На рис. 35 приведена общая схема определения азота после хроматографического разделения пробы на компоненты. Система с кранами позволяет направлять отдельные компоненты для специального анализа на углерод и азот во второй хроматограф. Содержание водорода не определялось, и образовавшаяся при сжигании вода поглощалась в осушителе с перхлоратом магния. Однако авторы указывают на возможность определения и водорода при замене перхлората магния карбидом кальция. [c.144]

    Обычно для этой цели в минеральном анализе применяют хлорид кальция, серную кислоту и фосфорный ангидрид. Кроме этих веществ, заслуживают внимания безводный и трехводный перхлораты магния (см. Реактивы , стр. 71). Чаще всего пользуются концентрированной серной кислотой, а если имеют в виду детальное исследование процесса постепенной отдачи воды минералами, то берут серную кислоту различной известной концентрации. Было показано что для полного обезвоживающего действия серной кислоты в эксикатор нужно наливать кислоту максимальной концентрации. Кислота, долго стоявшая в эксикаторах, которые были в постоянном употреблении, далеко не так активна, как свежая концентрированная серная кислота. Кроме того, серная кислота начинает темнеть от попадания в нее органических веществ из пыли или из смазки с крышки эксикатора. И то и другое является причиной появления заметных количеств сернистого ангидрида. [c.904]

    Ход анализа. Приготавливают перхлоратный раствор анализируемого материала, как описано выше, но с добавкой к пробе вместо кальция 10 мл раствора лантана перед разбавлением водных перхлоратов до 100 мл. Разбавляют 25 мл этого раствора до 50 мл в мерной колбе и, используя обогащенное воздушно-ацети-леновое пламя, определяют поглощение при 460,7 нм обычным путем. Приготавливают новые разбавленные пробы анализируемого раствора с добавками стронция, как описано в предыдущем разделе, измеряют поглощение пламени для каждого раствора и рассчитывают содержание стронция в породе. [c.391]

    Для количественного определения кальция была применена следующая методика. К нагретому до кипения анализируемому раствору прибавили раствор щавелевой кислоты, затем медленно нейтрализовали раствором гидроокиси аммония по метилоранжу. Осадок отфильтровали, промыли раствором щавелевокислого калия, прокалили при 950° С, тигель с окисью кальция охладили в эксикаторе с перхлоратом магния и взвесили. Результат анализа оказался неправильным. Указать, какая ошибка из нижеприведенных допущена в методике а) неправильно выбран индикатор б) неправильно выбрана промывная жидкость в) неправильно выбрана температура прокаливания г) неправильно выбрано вещество для наполнения эксикатора д) допущены все четыре названные ошибки. [c.170]


    Для устранения водяных паров необходимы специальные сепараторы 234, 239, 296, 313, 361, 362], усложняющие работу анализаторов и выполнение анализов, либо использование химических осушителей водяных паров. Осушители быстро насыщаются водяными парами и их необходимо часто менять. Они могут приводить к сорбции паров ртути на осушающей поверхности или загрязнению газового потока за счет десорбции ранее сорбированного металла. Так, с помощью радиоизотопов ртути показано, что слегка влажный хлорид кальция полностью поглощает пары восстановленной ртути из газового потока, в то время как перхлорат магния — всего несколько процентов [589]. Этот факт, однако, иногда не учитывается. Например, Министерство сельского, рыбного хозяйства и пищи Великобритании в методиках для мониторинга состояния окружающей среды рекомендует использовать хлорид кальция для осушения парогазовой смеси [372]. В [c.95]

    Для правильного установления состава объекта и получения воспроизводимых результатов необходимо удалить влаёу из образца, высушить его до постоянной массы или определить содержание воды, так как результат анализа следует пересчитать на постоянную массу. Чаще всего анализируемый образец высушивают на воздухе или в сушильных шкафах при относительно высокой температуре (105—120 "С). Получить воздушно-сухую массу образца можно лишь для таких негигроскопичных веществ, как металлы, сплавы, некоторые виды стекол и минералов. В отдельных случаях пробы высушивают в эксикаторах над влагопоглощающими веществами (хлорид кальция, фосфорный ангидрид, перхлорат магния, драйерит aS04 I/2H2O). Длительность и температуру высушивания образца, зависящие от его природы, устанавливают заранее экспериментально (например, методом термогравиметрии). Если какие-либо особые указания на этот счет в методике отсутствуют, образцы сушат в сушильных шкафах при ПО С в течение 1—2 ч. Иногда, особенно при сушке сложных объектов (пищевые продукты, растения, ряд геологических образцов и т. п.), используют вакуумную сушку или микроволновое излучение, что часто сокращает время сушки от часов до минут. [c.68]

    В случае необходимости плавиковую кислоту можно удалить упариванием с H2SO4 или H IO4. Однако применение этих кислот не желательно. В присутствии сульфат-иона в исследуемом растворе торий связывается в комплексный анион, в результате чего не достигается полнота осаждения тория иодатом, аммиаком и перекисью водорода кроме того, при анализе фосфатных пород и известняков, содержащих много кальция, образуются осадки сульфата кальция. Последние затрудняют последующее отделение тория от Zr и Ti плавиковой или щавелевой кислотой из-за образования нерастворимых двойных фторидов или двойных оксалатов циркония и кальция. Присутствие же в исследуемом растворе перхлоратов может привести к образованию стабильных эмульсий при экстракции органическими растворителями (например, этилацетатом) [578, стр. 11J. [c.162]

    Перхлораты магния, кальция, стронция и бария образуют комплексы с б молекулами пиридина , Все эти комплексы, за исключением соединения магния, расплываются на воздухе и весьма гигроскопичны. О гидроксиперхлоратах магния, кальция и бария сообщили Хэйк и Шнелл . Они были приготовлены растворением окислов металлов в соответствующих перхлоратах. Изучены pH, содержание окислов и спектры поглощения растворов полученных комплексов. Путем рентгеноскопического анализа установлено, что твердые фазы представляют собой основные соли. [c.49]

    Кадариу нашел, что при определении кремния в силикатах и алюминиевых сплавах лучше употреблять хлорную кислоту,, чем серную. Хлорную кислоту рекомендовали также для растворения оксалата кальция перед титрованием перманганатом. Када-риу1 предложил применять хлорною кислоту для разложения шлаков, высушенного цементного теста, портландцемента, боксита или глины. Турек разлагал глину фтористоводородной и хлорной кислотами. После перевода образовавшихся перхлоратов в сульфаты анализ заканчивали обычными методами. [c.123]

    Были предприняты попытки повысить кислотность низкомолекулярных жирных кислот для повышения точности их титрования введением других солей и применением систем растворителей. Скачок потенциала в точке эквивалентности для уксусной кислоты составляет лишь 75 мВ на 1 мл 0,05 AI раствора титранта (см. табл. 3.33) — это нижний предел для практического использования. В указанной выше работе Уортон предположил, что для повышения кислотности можно вводить перхлорат кальция, однако его трудно полностью обезводить. Если же соль обезвожена не полностью, возможен гидролиз ангидрида. Гринхау и Джонз (см. ниже) нашли, что перхлорат бария, который удается высушить нагреванием до 140°С, удовлетворительно заменяет хлорид лития при анализе жирных кислот с короткой цепью. [c.197]


    Оценивая эти три метода, Росс и Лоув [301 ] пришли к следующим выводам 1) при анализе удобрений, содержащих гидратную воду, нагревание при 100 °С дает более высокие результаты, чем два других метода 2) при анализе материалов, которые теряют воду в вакууме над перхлоратом магния, высушивание в токе нагретого до 60 °С воздуха дает заниженные результаты по сравнению с двумя другими методами 3) в присутствии свободной кислоты при 100°С увеличивается скорость дегидратации моногидрата первичного фосфата кальция 4) при высушивании нитрата аммония, содержащего окклюдированную воду, в токе нагретого до 60 °С воздуха получаются более высокие результаты, чем при высушивании в вакуум-эксикаторе 5) деструкция нитрата аммония при 100 °С протекает достаточно медленно 6) все три метода в основном дают сравнимые результаты при анализе стабильных материалов, не содержащих гидратной и окклюдированной воды 7) высушивание при 100 °С не пригодно для анализа смесей, содержащих легкоокисляющиеся органические вещества и мочевину. [c.123]

    Ванадатометрия основана на применении титрованных растворов метаванадата аммония NH4VO3 и других соединений ванадия. Как метод объемного анализа ванадатометрия разработана советским химиком В. С. Сырокомским в 1936 г. Титрование ва-надатом аммония применяют при определении фосфора, серы,, кальция, хрома, марганца, железа, меди, молибдена, свинца,, перхлоратов, гидразина. При определении железа (II) титрование ведут вбн. растворе H2SO4 с индикатором (0,1%-ным раствором фенилантраниловой кислоты). Реакция идет по уравненик> V0+ + 2Н + -f ё VQ2+ + HjO [c.421]

    Для разделения Са и S использована эксграмщя перхлората кальция трибутилфосфатом при pH 5 в присутствии трилона Б. Определение заканчивают комплексонометрич. титрованием Са с метилтимоловым синим, а S с ксиленоловым оранжевым. Относит, ошибка определения Са 1,0%, S 0,7%. Время анализа 20— 30 мин. Библ. 2 назв. [c.216]

    Пробу исследуемого органического вещества помещают в фарфоровую или платиновую лодочку и сжигают в кварцевой или стеклянной трубке в токе воздуха или кислорода. Газообразные продукты разложения проходят над платиновым катализатором и наполнением, находящимся в трубке, в результате чего углерод окисляется до двуокиси углерода, а водород до воды. Воду, выделяющуюся при сожжении, поглощают в трубке с хлоридом кальция или перхлоратом магния, а двуокись углерода — в трубке с натронной известью или аскаритом, после чего трубки взвешивают. Хлор, бром, иод и сера задерживаются компонентами универсального наполнения трубки (стр. 108). Для разложения окислов азота, образующихся при сожжении веществ, содержащих азот, применяют двуокись свинца или металлическую медь, не обладающую недостатками, свойственными двуокиси свинца (стр. 108). Однако металлическая медь при сожжении быстро становится нереакционноспособной вследствие окисления и должна быть снова восстановлена после проведения нескольких анализов. Двуокись свинца испольауют как в полумикроанализе, так и в микроанализе ее применение исчерпывающе описано на стр. 106. Ниже будет описано сожжение исследуемых веществ в присутствии меди в том варианте, в каком его применяли в Мюнхенском университете. [c.39]

    Для определения воды применяют 1) высушивание в сушильных шкафах до постоянного веса 2) гетерогенную перегонку жидких материалов с углеводородами или галогенопроизводными и измерение объема отслаивающейся воды 3) поглощение воды перхлоратом магния, СаЗО , СаСЦ, Р Об и т. п. и определение содержания ее по привесу поглотителя 4) обработку исследуемого в-ва карбидом кальция и измерение объема выделившегося ацетилена. Очень часто применяют т.н.реактив Фишера — иод-пиридин-метаноль-ный р-р, в состав к-рого входит ЗОа. Под действием воды происходит разрушение иод-пиридинового комплекса и выделение молекулярного иода. Определение воды выполняют титриметрически. Точку эквивалентности устанавливают по появлению отчетливой желто-оранжевой окраски свободного иода титр реактива — по стандартному р-ру иода в метаноле. При помощи реактива Фишера определяют воду в нефтяных фракциях, красках, лаках и политурах, пищевых продуктах и т. д. Титриметрич. метод применяется также для изучения процессов, связанных с выделением или поглощением воды. Известно много вариантов метода. В большинстве случаев воду эк-страг ируют из растворимых соединений или взвесей в неполярных растворителях и затем определяют титрованием реактивом. При анализе окрашенных в-в, а также нек-рых суспензий и эмульсий точку эквивалентности устанавливают электрометрически. Онре-деление воды затруднительно, а иногда невозможно в соединениях, вступающих в реакцию с одним из компонентов реактива (окислы и гидроокиси металлов, соли 2-валентной меди и 3-валентного железа, борная к-та и окислы бора и др.) в подобных случаях либо пассивируют эти в-ва по отношению к реактиву, напр, введением избытка уксусной к-ты устраняют влияние аминов и гидразинов, либо определяют мешающие в-ва в отдельных пробах и вводят соответств. [c.42]

    Для качественного предсказания растворимости твердых неэлектролитов в случае, когда хотя бы один из компонентов раствора является полярным веществом, используют классификацию Семенченко, основанную на подразделении веществ по мере увеличения их полярности (слабой, средней и сильной). Здесь возникают затруднения, связанные с оценкой полярности твердых веществ. Если принять в качестве такой меры обобщенный момент по Семенченко, равный отношению дипольного момента к длине связи, то для сложных органических молекул не всегда удается оценить эту величину. В работах Семенченко и Шахпаронова (1948) классификация базируется на анализе кривых х(е) (см. выше) при этом, в частности, наблюдаются такие аномалии, когда в группе веществ средней полярности фумаровая кислота оказывается рядом с перхлоратами лития и кальция, а сахар и винная кислота попадают в группу веществ высшей полярности. [c.75]


Смотреть страницы где упоминается термин Кальция перхлорат анализ: [c.44]    [c.145]    [c.70]    [c.70]    [c.135]    [c.42]    [c.31]    [c.281]    [c.86]    [c.46]    [c.142]   
Перхлораты свойства, производство и применение (1963) -- [ c.127 ]

Перхлораты Свойства, производство и применение (1963) -- [ c.127 ]

Повышение эффективности контроля надежности (2003) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ перхлоратов

Кальция перхлорат

Перхлораты



© 2024 chem21.info Реклама на сайте