Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициенты неводных растворов

    Гальванические элементы имеют разное назначение. Так, некоторые из них применяют в качестве источников постоянного тока, например, элементы Якоби —Даниэля, Лекланше, аккумуляторы. С другой стороны, изучение электродвижущей силы (э. д. с.) гальванических элементов (метод э. д. с.) широко используют во многих физико-химических исследованиях. Так, по Э.Д.С. гальванического элемента можно определить изменение энергии Гиббса, происходящее в результате реакции, протекающей в элементе, а также соответствующие изменения энтропии и энтальпии. Метод э. д. с. также широко применяют при исследовании свойств растворов электролитов, например, при определении коэффициентов активности, констант протолитической диссоциации, pH водных и неводных растворов, в потенциометрическом и полярографическом анализе и т. п. [c.478]


    Все приемы определения коэффициентов активности, рассмотренные для водных растворов, пригодны и для определения их в неводных растворах, если они отнесены к бесконечно разбавленному неводному раствору в качестве стандартного состояния. [c.62]

    Из прямых методов определения коэффициентов активности чаще всего применяют метод измерения электродвижущих сил цепей без переноса. Таким путем определены коэффициенты активности HG1 во многих неводных растворителях и в их смесях с водой (см. Приложение 5), коэффициенты активности многих галогенидов щелочных металлов (см. Приложение 6). Коэффициенты активности хлористого лития в амиловом спирте определены, кроме того, на основании коэффициентов распределения. Криоскопический метод широко применялся для определения коэффициентов активности солей в формамиде и в других растворителях, использовался также и эбулиоскопический метод. Затруднения в применении этих методов в неводных растворах, особенно в растворителях с низкой диэлектрической проницаемостью, связаны обычно с трудностями в экстраполяции свойств, например электродвижущих сил, к бесконечно разбавленному состоянию. Это объ- [c.62]

    При исследовании влияния растворителей на свойства электролитов — на их растворимость, силу, кислотность, а также на электродвижущие силы — широко использовался метод единых нулевых коэффициентов активности уо-Эти коэффициенты, в отличие от обычных, отнесены к состоянию ионов или молекул в бесконечно разбавленном водном растворе и определяются работой переноса ионов или молекул из бесконечно разбавленного неводного раствора в воду. [c.6]

    Единые нулевые коэффициенты активности 7о характеризуют изменения энергии вещества при его переходе от бесконечно разбавленного раствора в любом растворителе к бесконечно разбавленному водному раствору. Эти коэффициенты не зависят от концентрации, а только от различия в состоянии вещества в бесконечно разбавленном водном и в бесконечно разбавленном неводном растворе и, следовательно, зависят только от взаимодействия ионов с водой и неводным растворителем, нанример со спиртом. Они зависят от среды, но не от концентрации вещества в растворе. [c.27]

    Теплопроводность неводных растворов электролитов намного ниже теплопроводности их водных растворов. Зависимость коэффициента теплопроводности раствора (водного или неводного) от мольной концентрации во многих случаях линейна это позволяет выполнять графические расчеты. [c.331]


    В последнее время изопиестический метод приобретает широкое распространение как массовый метод определения коэффициентов активности. Этим методом определены многие коэффициенты активности в водных растворах. Делаются попытки его применения и к неводным растворам. [c.42]

    Не следует думать, что вопрос об определении активности отдельных ионов является отвлеченным теоретическим вопросом. Наоборот, в определение активности или коэффициентов активности отдельных ионов упирается ряд практически важных проблем и прежде всего проблема стандартизации pH в водных и неводных растворах. Затруднения в определении pH состоят именно в том, что мы не можем оценить коэффициент активности отдельно ионов водорода, независимо от коэффициента активности сопутствующих анионов. [c.58]

    Стандартизация pH в неводных растворах может быть выполнена так же, как и в водных растворах, т. е. путем изготовления стандартных растворов в том же растворителе, что и исследуемый раствор. Однако в этом случае возникает ряд затруднений. Например, коэффициенты активности сильных кислот значительно больше отличаются от единицы, чем в водных растворах сильные в воде кислоты становятся в неводных растворах слабыми хуже растворимы соли значительно меньше имеется данных о коэффициентах активности. В настояш ее время единственным веш еством, с помощью которого может быть произведена стандартизация pH в неводных растворах, является хлористый водород, так как для него имеются данные о коэффициентах активности в большинстве широко используемых растворителей и в их смесях с водой. В качестве электрода сравнения при измерениях в неводных растворах может быть использован хлорсеребряный электрод в растворе НС1, который вполне пригоден для измерений в ряде чистых неводных растворителей и их смесях с водой. [c.409]

    Коэффициенты активности в неводных растворах  [c.62]

    Концентрационные коэффициенты активности у в неводных растворах [c.62]

    Кривые коэффициентов активности НС1 в неводных растворах не проходят через минимум (рис. 14). В средах с низкими значениями диэлектрической проницаемости коэффициенты активности НС1 численно очень малы, до- [c.63]

    Рассмотрим растворимость малорастворимых солей. Для растворов зтих солей величины концентрационных коэффициентов активности 7 близки к единице. Для хлористого серебра, растворимость которого в воде равна м, коэффициент 7, рассчитанный по Дебаю, будет равен 0,98—0,96. В спиртах с меньшей диэлектрической проницаемостью коэффициенты активности сильнее зависят от концентрации, но там и концентрация меньше. Если 7 близки к единице, то отношение этих величин в водном и в неводном растворах еще ближе к единице поэтому для малорастворимых солей уравнение (I, 107) можно записать так  [c.189]

    Причиной, обусловливающей возрастание коэффициентов активности, является гидратация ионов в водных растворах или сольватация их в неводных растворах. [c.204]

    Таким образом, неприложимость уравнения Робинсона — Стокса не может быть оправдана тем, что в неводных растворах эффект сольватации меньше, чем в воде. Отсутствие минимума в неводных растворах с низкой диэлектрической проницаемостью объясняется тем, что наряду с эффектом сольватации наблюдается и эффект ассоциации ионов. Следовательно, с одной стороны, связывание части растворителя в сольватную оболочку ионов и их частичная десольватация с ростом концентрации повышают коэффициенты активности, но, с другой стороны, ассоциация понижает их. Чтобы описать зависимость коэффициентов активности от концентрации, в этих случаях недостаточно учитывать только явление сольватации, необходимо учитывать также и изменение ассоциации ионов. [c.209]

    Расчет pH в неводных растворах. В принципе алгебраические соотношения для расчета pH в водных средах пригодны для расчета pH в среде любого растворителя, конечно, с использованием констант кислотности и основности в данном растворителе и константы его автопротолиза. Однако на практике такие расчеты применяют редко. Во-первых, пока мало достоверных значений констант для неводных растворителей, во-вторых, мало сведений о процессах, протекаюпщх в этих средах, — ассоциации, ионизации и т. п., в-третьих, коэффициенты активности аниона и катиона (т. е. сольватированного протона) 1фи переходе от одного растворителя к другому изменяются по-разному, а экспериментально определяется лишь средний коэффициент активности. [c.137]

    Из этого соотношения можно найти ионные коэффициенты активности, отнесенные к ионной концентрации т . Для этого необходимы данные о величинах а, полученные из независимых данных, например из электропроводности. В ряде случаев константы диссоциации для сильных электролитов известны. Они известны для растворов ряда кислот, и в частности для соляной кислоты, почти во всех растворителях. Расчеты показали, что в неводных растворах, в тех случаях, когда кривая 1п у не проходит через минимум, кривые 1п Уи все же проходят через минимум. Таким образом, ассоциация является причиной неприложимости уравнения Робинсона — Стокса и отсутствия минимума на кривых (рис. 53). Это обстоятельство показано на многих примерах в работе автора с Ивановой по отношению к солям и на очень большом числе примеров в работе Александрова по отношению к соляной кислоте. [c.209]


    В этом уравнении % отнесена к бесконечно разбавленному неводному раствору лиония, а единый коэффициент активности (Уо. н+) отнесен к водному раствору протона. Отрицательный логарифм коэффициента активности (— +) служит мерой перехода от шкалы рНр к шкале рА. [c.421]

    Из сказанного можно также заключить, что понятия о силе кислоты и кислотности принципиально отличаются друг от друга. В то время как сила кислоты в любом растворителе обусловливается ее константой диссоциации, кислотность определяется активностью ионов лиония, связанной с основностью данного растворителя, их концентрацией и их концентрационными и едиными коэффициентами активности. Например, слабая в воде кислота в среде основного растворителя становится сильной, но ее неводный раствор может быть менее кислым, чем в воде, [c.421]

    Молярные коэффициенты погашения растворов роданидов кобальта в некоторых неводных растворителях и их смесях приведены в табл. 9. [c.22]

    Скорость реакций восстановления ионов щелочных металлов закономерно увеличивается от Li+ к s+ в большинстве изученных органических растворителей. Например, в ДМСО [925] восстановление иона Li+ происходит медленно (необратимо), восстановление иона Na+ быстрее (квазиобратимо), а К+, Rb+, s+ восстанавливаются быстро и обратимо. Количественные данные немногочисленны (табл. 7, 11 приложения) и относятся в основном к литию и натрию. Для сравнительной характеристики водных и неводных растворов следует отметить, что гетерогенная константа скорости восстановления ионов щелочных металлов в воде находится в пределах (от 2 до 9)-10 з см/с, а коэффициенты диффузии имеют порядок 10-5 (-м/с. [c.79]

    Метод тепловой конвекции при вертикальном переносе вещества является в настоящее время практически единственным методом выращивания кристаллов из высокотемпературных растворов под давлением (так называемое гидротермальное выращивание кристаллов). Здесь можно назвать синтез кристаллов кварца массой в несколько килограммов, кристаллов кальцита, корунда и др. Этот метод применяется также для выращивания кристаллов из высокотемпературных неводных растворов при атмосферном давлении, или, как их называют, из растворов в расплаве. Метод является достаточно универсальным по разнообразию растворимостей и температурных коэффициентов растворимости веществ, кристаллы которых выращиваются с его помощью. [c.109]

    Для неводных растворов низких концентраций метод определения коэффициента диффузии разработан Вильке, Ченгом и Шей-белем [248, 256]  [c.18]

Рис. VII. 3. Средние коэффициенты актив- Растворителе. На нижней ча-ности НС1 в воде и неводных растворите- СТИ рисунка показана та же лях зависимость для коэффици- Рис. VII. 3. <a href="/info/32528">Средние коэффициенты</a> актив- Растворителе. На нижней ча-ности НС1 в воде и <a href="/info/8349">неводных растворите</a>- СТИ рисунка показана та же лях зависимость для коэффици-
    Таким образом, мы вывели уравнение для единых нулевых коэффициентов активности протона, характеризующихся изменением изобарного потенциала при переносе протона из неводного раствора с активностью равной единице в водный раствор с той же активностью. Однако нельзя определить экспериментально отдельно коэффициент активности протонов или ионов лиония. Можно определить только средний коэффициент активности катионов и анионов. В обычных опытах нельзя осуществить отдельно перенос протонов из одного растворителя в другой. Можно перенести только хлористый водород или другую кислоту из одного растворителя в другой. Протон будет переноситься вместе с анионом, например — ионом хлора. Чтобы можно было сравнить выведенное уравнение с экспериментальными данными, перейдем к средним коэффициентам активности lg То = lg То ионов- [c.375]

    Значительно сложнее определять константы диссоциации для электролитов средней силы в водных, и особенно, в неводных растворах. В этих случаях свойства электролитов зависят как от неполной диссоциации, так и от значительного отличия коэффициентов активности ионов от единицы. Для электролитов средней силы нельзя пренебречь коэффициентом актив-1Г0СТИ, и описанный выше прием экстраполяции на нулевую ионную силу уже невозможен. Тем не менее и для них можно определить константу диссоциации. Трудность заключается в том, что для правильной оценки а ъ у при определении константы диссоциации нужно знать концентрацию ионов. Если пользоваться только данными по электропроводности, то для определения величины а нужно знать также значение константы диссоциации. Получается замкнутый круг Действительно [c.126]

    Уилк и Чанг нашли, что расчет коэффициента диффузии неэлектролитов Б неводных растворах по формуле (ХП-19) гораздо точнее, чем по уравнению (XII-18). Средняя погрешность расчета по формуле (ХП-19) составляет 10%. [c.502]

    Есть три метода определения коэффициентов активности метод, основанный на измерении электродвижущих сил цепей без переноса бесконечно разбавленных растворах в различных растворителях метод, основанный ыа определении различия давления нара растворенного электролита метод, основанный на определении растворимости в различных растворителях (см. гл. I). В настоящее время еще мало данных о величинах нормальных потенциалов цепей в неводных растворах. В работах автора совместно с Е. Ф. Ивановой были измерены электродвижущие силы ряда цепей, содержащих галоидные соли щелочных металлов в спиртах. Было показано, что величины Ig 7о исследованных солей линейно зависят от 1/е (рис. 46). Этот результат кажется до некоторой степени неожиданным, так как теоретически выведенное уравнение (IV,60) o toiit из двучлена, первый член которого [c.187]

    В формуле (4.51) величину /С,, выраженную через действующие массы вместо концентраций комплексов и лигандов, называют термодинамической константой равновесия. Для пересчета концентраций в действующие массы используются усредненные коэффициенты действующих масс, ио поскольку они зависят от ионной силы растворов, это обстоятельство следует иметь в виду. Величину Кц, выраженную через коицеитрацни с учетом этого фактора, называют условной константой равновесия. Кроме того, для бидентат-иых лигаидов К1 имеет размерность М . Прн рассмотрении только водных растворов концентрация воды может быть принята постоянной и равной 55,5 М, а прн рассмотрении и неводных растворов необходимо учитывать размерность константы равновесия. [c.242]

    С помощью номограммы Отмера и Текера (рис. ХП-9) можно быстро, но менее точно определять О2 при температуре Гг, когда известен коэффициент при Тх. Этот метод можно рекомендовать для водных растворов, так как в случае неводных растворов возможны значительные ошибки. [c.511]

    Методы бегущей волны с уравновешиванием по фазе и амплитуде широко использовались для изучения диэлектрической релаксации как в водных, так и в неводных растворах электролитов при концентрациях в ряде случаев вплоть до 10 моль л 1 [45]. Харрис и О Конски [45] применили несколько иной подход. Они измеряли положения минимумов напряжения и коэффициент стоячей волны по напряжению [c.352]

    Эти коэффициенты не зависят от концентрации, а только от различия в состоянии вещества в бесконечно разбавленном водном и в бесконечно разбавленном неводном растворе и, следовательно, зависят только от взаимодействия ионов с водой и неводньш растворителем, например, со спиртом. Эти коэффициенты активности обусловлены первичным эффектом среды, т. е. зависят от самой среды, но не от концентрации вещества в растворе. [c.83]

    Коэффициенты активности в неводных растворах могут быть отнесены к бесконечно разбавленному неводному раствору в качестве стандарта [эти коэффициенты активности мьг отмечаем индексом ( )] и к единому стандартному состоянию у. Чаще всего в качестве такого стандартного состояни>г выбирается бесконечно разбавленный водный раствор. Связь между этими коэффициентами активности устанавливается <Г помощью единых нулевых коэффициентов активности У == ТоТ - Эти коэффициенты активности ь показывают различие в энергии вещества в стандартных состояниях. [c.141]

    В предыдуцдих главах мы рассмотрели изменение свойств электролитов в связи с образованием вокруг ионов ионной атмосферы и в связи с ассоциацией их в ионные двойники и в более сложные агрегаты. Мы установили, что свойства электролитов средней силы в водных растворах и свойства сильных истинных электролитов в неводных растворах зависят от обеих причин и от образования ионной атмосферы и от равновесия между свободными ионами и ионами, связанными в ионные двойники и в ионные тройники. При описании свойств электролито средней силы мы учитывали неполную диссоциацию и одновременно величину коэффициентов активности ионов по теории Дебая (см. главу 4). [c.273]


Смотреть страницы где упоминается термин Коэффициенты неводных растворов: [c.483]    [c.239]    [c.93]    [c.508]   
Справочник химика Том 3 Изд.2 (1965) -- [ c.651 , c.656 ]

Справочник химика Том 3 Издание 2 (1964) -- [ c.651 , c.656 ]

Справочник химика Изд.2 Том 3 (1964) -- [ c.651 , c.656 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент растворов

Коэффициенты активности единые в неводных растворах

Коэффициенты активности электролитов в неводных растворах

Неводные растворы коэффициент активности

Растворы неводные



© 2025 chem21.info Реклама на сайте